SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Synovial fluid

42

Hyaluronan (or hyaluronic acid, HA) is a ubiquitous molecule that plays critical roles in numerous physiological functions in vivo, including tissue hydration, inflammation, and joint lubrication. Both the abundance and size distribution of HA in biological fluids are recognized as robust indicators of various pathologies and disease progressions. However, such analyses remain challenging because conventional methods are not sufficiently sensitive, have limited dynamic range, and/or are only semi-quantitative. Here we demonstrate label-free detection and molecular weight discrimination of HA with a solid-state nanopore sensor. We first employ synthetic HA polymers to validate the measurement approach and then use the platform to determine the size distribution of as little as 10 ng of HA extracted directly from synovial fluid in an equine model of osteoarthritis. Our results establish a quantitative method for assessment of a significant molecular biomarker that bridges a gap in the current state of the art.

Concepts: Matter, Scientific method, Oxygen, Electron, Biology, Molecule, Hyaluronan, Synovial fluid

31

To assess the accuracy of dual-energy CT (DECT) for diagnosing gout, and to explore whether it can have any impact on clinical decision making beyond the established diagnostic approach using polarising microscopy of synovial fluid (diagnostic yield).

Concepts: Decision making, Synovial fluid, Diagnosis

14

Hyaluronan (HA) is a component that is particularly abundant in the synovial fluid. Randomized, double-blinded, placebo-controlled trials carried out between 2008 and 2015 have proven the effectiveness of HA for the treatment of symptoms associated with synovitis, and particularly, knee pain, relief of synovial effusion or inflammation, and improvement of muscular knee strength. The mechanism by which HA exerts its effects in the living body, specifically receptor binding in the intestinal epithelia, has gradually been clarified. This review examines the effects of HA upon knee pain as assessed in clinical trials, as well as the mechanism of these effects and the safety of HA.

Concepts: Effect, Placebo, Hyaluronan, Clinical research, Rheumatoid arthritis, Synovial fluid, Clinical trial, Effectiveness

8

When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants.

Concepts: Lubrication theory, Non-Newtonian fluid, Lubricants, Boundary lubrication, Synovial fluid, Lubricant, Lubrication, Tribology

4

The dysregulation of NLRP3 inflammasome can cause uncontrolled inflammation and drive the development of a wide variety of human diseases, but the medications targeting NLRP3 inflammasome are not available in clinic. Here, we show that tranilast (TR), an old anti-allergic clinical drug, is a direct NLRP3 inhibitor. TR inhibits NLRP3 inflammasome activation in macrophages, but has no effects on AIM2 or NLRC4 inflammasome activation. Mechanismly, TR directly binds to the NACHT domain of NLRP3 and suppresses the assembly of NLRP3 inflammasome by blocking NLRP3 oligomerization.In vivoexperiments show that TR has remarkable preventive or therapeutic effects on the mouse models of NLRP3 inflammasome-related human diseases, including gouty arthritis, cryopyrin-associated autoinflammatory syndromes, and type 2 diabetes. Furthermore, TR is activeex vivofor synovial fluid mononuclear cells from patients with gout. Thus, our study identifies the old drug TR as a direct NLRP3 inhibitor and provides a potentially practical pharmacological approach for treating NLRP3-driven diseases.

Concepts: Metabolic syndrome, Arthritis, Pharmacology, Synovial fluid, Rheumatology, Obesity, Gout, Medicine

3

Autoantibodies to citrullinated protein antigens are specific markers of rheumatoid arthritis (RA). Although protein citrullination can be activated by numerous stimuli in cells, it remains unclear which of these produce the prominent citrullinated autoantigens targeted in RA. In these studies, we show that RA synovial fluid cells have an unusual pattern of citrullination with marked citrullination of proteins across the broad range of molecular weights, which we term cellular hypercitrullination. Although histone citrullination is a common event during neutrophil activation and death induced by different pathways including apoptosis, NETosis, and necroptosis/autophagy, hypercitrullination is not induced by these stimuli. However, marked hypercitrullination is induced by two immune-mediated membranolytic pathways, mediated by perforin and the membrane attack complex (MAC), which are active in the RA joint and of importance in RA pathogenesis. We further demonstrate that perforin and MAC activity on neutrophils generate the profile of citrullinated autoantigens characteristic of RA. These data suggest that activation of peptidylarginine deiminases during complement and perforin activity may be at the core of citrullinated autoantigen production in RA. These pathways may be amenable to monitoring and therapeutic modulation.

Concepts: Gene, Proteins, Synovial fluid, Autoimmunity, Protein, DNA, Immune system, Rheumatoid arthritis

2

One potential mechanism for early superficial cartilage wear in normal joints is alteration of the lubricant content and quality of synovial fluid. The purpose of this study was to determine if the concentration and quality of the lubricant, hyaluronan, in synovial fluid: (1) was similar in left and right knees; (2) exhibited similar age-associated trends, whether collected postmortem or antemortem; and (3) varied with age and grade of joint degeneration.

Concepts: Bone, Synovial fluid, Cartilage, Osteoarthritis, Joints, Joint, Synovial joint, Knee

2

Synovitis occurring frequently in osteoarthritis (OA) may be a targeted outcome. There are no data examining whether synovitis changes following intra-articular intervention.

Concepts: Synovial fluid, Osteoarthritis, Joint, Knee, Rheumatoid arthritis, Synovial joint

1

The role of native (not culture-expanded) joint-resident mesenchymal stem cells (MSCs) in the repair of joint damage in osteoarthritis (OA) is poorly understood. MSCs differ from bone marrow-residing haematopoietic stem cells in that they are present in multiple niches in the joint, including subchondral bone, cartilage, synovial fluid, synovium and adipose tissue. Research in experimental models suggests that the migration of MSCs adjacent to the joint cavity is crucial for chonodrogenesis during embryogenesis, and also shows that synovium-derived MSCs might be the primary drivers of cartilage repair in adulthood. In this Review, the available data is synthesized to produce a proposed model in which joint-resident MSCs with access to superficial cartilage are key cells in adult cartilage repair and represent important targets for manipulation in ‘chondrogenic’ OA, especially in the context of biomechanical correction of joints in early disease. Growing evidence links the expression of CD271, a nerve growth factor (NGF) receptor by native bone marrow-resident MSCs to a wider role for neurotrophins in OA pathobiology, the implications of which require exploration since anti-NGF therapy might worsen OA. Recognizing that joint-resident MSCs are comparatively abundant in vivo and occupy multiple niches will enable the optimization of single-stage therapeutic interventions for OA.

Concepts: Joint, Knee, Synovial fluid, Stem cell, Bone, Mesenchymal stem cell, Bone marrow, Nerve growth factor

1

Loop-Mediated Isothermal Amplification (LAMP) is a simple and sensitive technique for rapid microbiological diagnosis. The aim of this study was to evaluate analytical and diagnostic performance of LAMP eazyplex(®) MRSA test for direct detection and differentiation of Methicillin-Susceptible(MSSA) and Methicillin-Resistant Staphylococcus aureus(MRSA) in synovial/pleural fluids.

Concepts: Synovial fluid, Staphylococcus, Diagnosis, Staphylococcaceae, Greek loanwords, Pneumonia, Methicillin-resistant Staphylococcus aureus, Staphylococcus aureus