Discover the most talked about and latest scientific content & concepts.

Concept: Synapse


Information in a computer is quantified by the number of bits that can be stored and recovered. An important question about the brain is how much information can be stored at a synapse through synaptic plasticity, which depends on the history of probabilistic synaptic activity. The strong correlation between size and efficacy of a synapse allowed us to estimate the variability of synaptic plasticity. In an EM reconstruction of hippocampal neuropil we found single axons making two or more synaptic contacts onto the same dendrites, having shared histories of presynaptic and postsynaptic activity. The spine heads and neck diameters, but not neck lengths, of these pairs were nearly identical in size. We found that there is a minimum of 26 distinguishable synaptic strengths, corresponding to storing 4.7 bits of information at each synapse. Because of stochastic variability of synaptic activation the observed precision requires averaging activity over several minutes.

Concepts: Action potential, Neurophysiology, Axon, Brain, Chemical synapse, Synapse, Long-term potentiation, Neuron


A hypothesis and the experiments to test it propose that very long-term memories, such as fear conditioning, are stored as the pattern of holes in the perineuronal net (PNN), a specialized ECM that envelops mature neurons and restricts synapse formation. The 3D intertwining of PNN and synapses would be imaged by serial-section EM. Lifetimes of PNN vs. intrasynaptic components would be compared with pulse-chase (15)N labeling in mice and (14)C content in human cadaver brains. Genetically encoded indicators and antineoepitope antibodies should improve spatial and temporal resolution of the in vivo activity of proteases that locally erode PNN. Further techniques suggested include genetic KOs, better pharmacological inhibitors, and a genetically encoded snapshot reporter, which will capture the pattern of activity throughout a large ensemble of neurons at a time precisely defined by the triggering illumination, drive expression of effector genes to mark those cells, and allow selective excitation, inhibition, or ablation to test their functional importance. The snapshot reporter should enable more precise inhibition or potentiation of PNN erosion to compare with behavioral consequences. Finally, biosynthesis of PNN components and proteases would be imaged.

Concepts: DNA, Brain, Chemical synapse, Neuron, Synapse, Psychology, Genetics, Gene


The E4 isoform of apolipoprotein (apoE4) is known to be a major risk factor for Alzheimer’s Disease (AD). Previous in vitro studies have shown apoE4 to have a negative effect on neuronal outgrowth when incubated with lipids. The effect of apoE4 itself on the development of neurons from the central nervous system (CNS), however, has not been well characterized. Consequently, apoE4 alone has not been pursued as a substrate for neuronal cultures. In this study, the effect of surface-bound apoE4 on developmental features of rat hippocampal neurons was examined. We show that apoE4 substrates elicit significantly enhanced values in all developmental features at day 2 of culture when compared to laminin (LN) substrates, which is the current substrate-of-choice for neuronal cultures. Interestingly, the adhesion of hippocampal neurons was found to be significantly lower on LN substrates than on glass substrates, but the axon lengths on both substrates were similar. In addition, this study demonstrates that the adhesion- and growth-enhancing effects of apoE4 substrates are not mediated by heparan sulfate proteoglycans (HSPGs), proteins that have been indicated to function as receptors or co-receptors for apoE4. In the absence of lipids, apoE4 appears to use an unknown pathway for up-regulating neuronal adhesion and neurite outgrowth. Our results indicate that apoE4 is better than LN as a substrate for primary cultures of CNS neurons and should be considered in the design of tissue engineered CNS.

Concepts: Heparan sulfate, Synapse, Axon, Alzheimer's disease, Central nervous system, Brain, Neuron, Nervous system


Local supra-linear summation of excitatory inputs occurring in pyramidal cell dendrites, the so-called dendritic spikes, results in independent spiking dendritic sub-units, which turn pyramidal neurons into two-layer neural networks capable of computing linearly non-separable functions, such as the exclusive OR. Other neuron classes, such as interneurons, may possess only a few independent dendritic sub-units, or only passive dendrites where input summation is purely sub-linear, and where dendritic sub-units are only saturating. To determine if such neurons can also compute linearly non-separable functions, we enumerate, for a given parameter range, the Boolean functions implementable by a binary neuron model with a linear sub-unit and either a single spiking or a saturating dendritic sub-unit. We then analytically generalize these numerical results to an arbitrary number of non-linear sub-units. First, we show that a single non-linear dendritic sub-unit, in addition to the somatic non-linearity, is sufficient to compute linearly non-separable functions. Second, we analytically prove that, with a sufficient number of saturating dendritic sub-units, a neuron can compute all functions computable with purely excitatory inputs. Third, we show that these linearly non-separable functions can be implemented with at least two strategies: one where a dendritic sub-unit is sufficient to trigger a somatic spike; another where somatic spiking requires the cooperation of multiple dendritic sub-units. We formally prove that implementing the latter architecture is possible with both types of dendritic sub-units whereas the former is only possible with spiking dendrites. Finally, we show how linearly non-separable functions can be computed by a generic two-compartment biophysical model and a realistic neuron model of the cerebellar stellate cell interneuron. Taken together our results demonstrate that passive dendrites are sufficient to enable neurons to compute linearly non-separable functions.

Concepts: Synapse, Axon, Purkinje cell, Dendrite, Cerebellum, Pyramidal cell, Action potential, Neuron


Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the microglial reaction was significantly attenuated. The results indicate a therapeutic potential for NAC and ALC in the early treatment of traumatic spinal cord injury.

Concepts: Glial cell, Spinal cord, Synapse, Nervous system, Axon, Myelin, Action potential, Neuron


The PACSIN (protein kinase C and casein kinase 2 substrate in neurons) adapter proteins couple components of the clathrin-mediated endocytosis machinery with regulators of actin polymerization and thereby regulate the surface expression of specific receptors. The brain-specific PACSIN 1 is enriched at synapses and has been proposed to affect neuromorphogenesis and the formation and maturation of dendritic spines. In studies of how phosphorylation of PACSIN 1 contributes to neuronal function, we identified serine 358 as a specific site used by casein kinase 2 (CK2) in vitro and in vivo. Phosphorylated PACSIN 1 was found in neuronal cytosol and membrane fractions. This localization could be modulated by trophic factors such as BDNF. We further show that expression of a phospho-negative PACSIN 1 mutant, S358A, or inhibition of CK2 drastically reduces spine formation in neurons. We identified a novel protein complex containing the spine regulator Rac1, its GAP neuron-associated developmentally-regulated protein (NADRIN) and PACSIN 1. CK2 phosphorylation of PACSIN 1 leads to a dissociation of the complex upon BDNF-treatment and induces Rac1-dependent spine formation in dendrites of hippocampal neurons. These findings suggest that upon BDNF signaling PACSIN 1 is phosphorylated by CK2 which is essential for spine formation.

Concepts: Protein kinase, Purkinje cell, Protein kinases, Dendrite, Synapse, Adenosine triphosphate, Neuron, Signal transduction


In reward learning, the integration of NMDA-dependent calcium and dopamine by striatal projection neurons leads to potentiation of corticostriatal synapses through CaMKII/PP1 signaling. In order to elicit the CaMKII/PP1-dependent response, the calcium and dopamine inputs should arrive in temporal proximity and must follow a specific (dopamine after calcium) order. However, little is known about the cellular mechanism which enforces these temporal constraints on the signal integration. In this computational study, we propose that these temporal requirements emerge as a result of the coordinated signaling via two striatal phosphoproteins, DARPP-32 and ARPP-21. Specifically, DARPP-32-mediated signaling could implement an input-interval dependent gating function, via transient PP1 inhibition, thus enforcing the requirement for temporal proximity. Furthermore, ARPP-21 signaling could impose the additional input-order requirement of calcium and dopamine, due to its Ca2+/calmodulin sequestering property when dopamine arrives first. This highlights the possible role of phosphoproteins in the temporal aspects of striatal signal transduction.

Concepts: Action potential, Systems theory, Dopamine, Synapse, Neuron


The enteric nervous system (ENS) undergoes neuronal loss and degenerative changes with age. The cause of this neurodegeneration is poorly understood. Muscularis macrophages residing in close proximity to enteric ganglia maintain neuromuscular function via direct crosstalk with enteric neurons and have been implicated in the pathogenesis of GI motility disorders like gastroparesis and postoperative ileus. The aim of this study was to assess whether ageing causes alterations in macrophage phenotype that contributes to age-related degeneration of the ENS.

Concepts: Myelin, Brain, Synapse, Axon, Neurotransmitter, Ganglion, Nervous system, Neuron


Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.

Concepts: Myelin, Cerebral cortex, Nervous system, Synapse, Brain, Axon, Action potential, Neuron


The fly visual system offers a unique opportunity to explore computations performed by single neurons. Two previous studies characterized, in vivo, the receptive field (RF) of the vertical system (VS) cells of the blowfly (calliphora vicina), both intracellularly in the axon, and, independently using Ca2+ imaging, in hundreds of distal dendritic branchlets. We integrated this information into detailed passive cable and compartmental models of 3D reconstructed VS cells. Within a given VS cell type, the transfer resistance (TR) from different branchlets to the axon differs substantially, suggesting that they contribute unequally to the shaping of the axonal RF. Weighting the local RFs of all dendritic branchlets by their respective TR yielded a faithful reproduction of the axonal RF. The model also predicted that the various dendritic branchlets are electrically decoupled from each other, thus acting as independent local functional subunits. The study suggests that single neurons in the fly visual system filter dendritic noise and compute the weighted average of their inputs.

Concepts: Retina, Calliphora vicina, Synapse, Action potential, Neuron, Axon, Nervous system, Dendrite