SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Sweeteners

1040

Nonnutritive sweeteners, such as aspartame, sucralose and stevioside, are widely consumed, yet their long-term health impact is uncertain. We synthesized evidence from prospective studies to determine whether routine consumption of non-nutritive sweeteners was associated with long-term adverse cardiometabolic effects.

Concepts: Epidemiology, Clinical trial, Evidence-based medicine, Systematic review, Randomized controlled trial, Sweeteners, Sugar substitute, Sucralose

203

Artificial sweeteners have been widely incorporated in human food products for aid in weight loss regimes, dental health protection and dietary control of diabetes. Some of these widely used compounds can pass non-degraded through wastewater treatment systems and are subsequently discharged to groundwater and surface waters. Measurements of artificial sweeteners in rivers used for drinking water production are scarce. In order to determine the riverine concentrations of artificial sweeteners and their usefulness as a tracer of wastewater at the scale of an entire watershed, we analyzed samples from 23 sites along the entire length of the Grand River, a large river in Southern Ontario, Canada, that is impacted by agricultural activities and urban centres. Municipal water from household taps was also sampled from several cities within the Grand River Watershed. Cyclamate, saccharin, sucralose, and acesulfame were found in elevated concentrations despite high rates of biological activity, large daily cycles in dissolved oxygen and shallow river depth. The maximum concentrations that we measured for sucralose (21 µg/L), cyclamate (0.88 µg/L), and saccharin (7.2 µg/L) are the highest reported concentrations of these compounds in surface waters to date anywhere in the world. Acesulfame persists at concentrations that are up to several orders of magnitude above the detection limit over a distance of 300 km and it behaves conservatively in the river, recording the wastewater contribution from the cumulative population in the basin. Acesulfame is a reliable wastewater effluent tracer in rivers. Furthermore, it can be used to assess rates of nutrient assimilation, track wastewater plume dilution, separate human and animal waste contributions and determine the relative persistence of emerging contaminants in impacted watersheds where multiple sources confound the usefulness of other tracers. The effects of artificial sweeteners on aquatic biota in rivers and in the downstream Great Lakes are largely unknown.

Concepts: Water, Water pollution, Sewage treatment, Wastewater, Environmental engineering, Effluent, Sweeteners, Sucralose

61

The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.

Concepts: Nutrition, Insulin, Diabetes mellitus, Sugar, Sweeteners, Sugar substitute, Sucralose, Sorbitol

46

Aspartame is a commonly used intense artificial sweetener, being approximately 200 times sweeter than sucrose. There have been concerns over aspartame since approval in the 1980s including a large anecdotal database reporting severe symptoms. The objective of this study was to compare the acute symptom effects of aspartame to a control preparation.

Concepts: Sugar, Sweeteners, Sucralose

40

Non-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception, and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together, our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat.

Concepts: Nutrition, Eating, Food, Taste, Sugar, Sweeteners, Sucralose, Sweetness

40

It has been suggested that the use of nonnutritive sweeteners (NNSs) can lead to weight gain, but evidence regarding their real effect in body weight and satiety is still inconclusive. Using a rat model, the present study compares the effect of saccharin and aspartame to sucrose in body weight gain and in caloric intake. Twenty-nine male Wistar rats received plain yogurt sweetened with 20% sucrose, 0.3% sodium saccharin or 0.4% aspartame, in addition to chow and water ad libitum, while physical activity was restrained. Measurements of cumulative body weight gain, total caloric intake, caloric intake of chow and caloric intake of sweetened yogurt were performed weekly for 12weeks. Results showed that addition of either saccharin or aspartame to yogurt resulted in increased weight gain compared to addition of sucrose, however total caloric intake was similar among groups. In conclusion, greater weight gain was promoted by the use of saccharin or aspartame, compared with sucrose, and this weight gain was unrelated to caloric intake. We speculate that a decrease in energy expenditure or increase in fluid retention might be involved.

Concepts: Real number, E number, Aspartame, Sweeteners, Ad libitum, Sucralose, Saccharin, Equal

33

Despite safety reports of the artificial sweetener aspartame, health-related concerns remain.

Concepts: Aspartame, Sweeteners

31

Cross-sectional studies have linked intake of high fructose corn syrup sweetened beverages with asthma in school children.

Concepts: Cross-sectional study, Starch, High school, Fructose, High-fructose corn syrup, Corn syrup, Sweeteners, Syrup

27

Regulatory authorities worldwide have found the nonnutritive sweetener, sucralose, to be noncarcinogenic, based on a range of studies. A review of these and other studies found through a comprehensive search of electronic databases, using appropriate key terms, was conducted and results of that review are reported here. An overview of the types of studies relied upon by regulatory agencies to assess carcinogenicity potential is also provided as context. Physiochemical and pharmacokinetic/toxicokinetic studies confirm stability under conditions of use and reveal no metabolites of carcinogenic potential. In vitro and in vivo assays reveal no confirmed genotoxic activity. Long-term carcinogenicity studies in animal models provide no evidence of carcinogenic potential for sucralose. In studies in healthy adults, sucralose was well-tolerated and without evidence of toxicity or other changes that might suggest a potential for carcinogenic effects. In summary, sucralose does not demonstrate carcinogenic activity even when exposure levels are several orders of magnitude greater than the range of anticipated daily ingestion levels.

Concepts: Oncology, Energy, In vivo, Toxicology, In vitro, Carcinogen, Mutagen, Sweeteners

27

Artificial sweeteners are gaining acceptance as tracers of human wastewater in the environment. The 3 artificial sweeteners analyzed in this study were detected in leachate or leachate-impacted groundwater at levels comparable to those of untreated wastewater at 14 of 15 municipal landfill sites tested, including several closed for >50 years. Saccharin was the dominant sweetener in old (pre-1990) landfills, while newer landfills were dominated by saccharin and acesulfame (introduced 2 decades ago; dominant in wastewater). Cyclamate was also detected, but less frequently. A case study at one site illustrates the use of artificial sweeteners to identify a landfill-impacted groundwater plume discharging to a stream. The study results suggest that artificial sweeteners can be useful tracers for current and legacy landfill contamination, with relative abundances of the sweeteners potentially providing diagnostic ability to distinguish different landfills or landfill cells, including crude age-dating, and to distinguish landfill and wastewater sources.

Concepts: Groundwater, Anaerobic digestion, Leachate, Landfill, Land reclamation, Aspartame, Sweeteners, Sucralose