SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Surface runoff

157

Global climate change is causing a wastage of glaciers and threatening biodiversity in glacier-fed ecosystems. The high turbidity typically found in those ecosystems, which is caused by inorganic particles and result of the erosive activity of glaciers is a key environmental factor influencing temperature and light availability, as well as other factors in the water column. Once these lakes loose hydrological connectivity to glaciers and turn clear, the accompanying environmental changes could represent a potential bottleneck for the established local diversity with yet unknown functional consequences. Here, we study three lakes situated along a turbidity gradient as well as one clear unconnected lake and evaluate seasonal changes in their bacterial community composition and diversity. Further, we assess potential consequences for community functioning. Glacier runoff represented a diverse source community for the lakes and several taxa were able to colonize downstream turbid habitats, although they were not found in the clear lake. Operational taxonomic unit-based alpha diversity and phylogenetic diversity decreased along the turbidity gradient, but metabolic functional diversity was negatively related to turbidity. No evidence for multifunctional redundancy, which may allow communities to maintain functioning upon alterations in diversity, was found. Our study gives a first view on how glacier-fed lake bacterial communities are affected by the melting of glaciers and indicates that diversity and community composition significantly change when hydrological connectivity to the glacier is lost and lakes turn clear.The ISME Journal advance online publication, 15 January 2016; doi:10.1038/ismej.2015.245.

Concepts: Biodiversity, Lake, Climate, Water pollution, Antarctica, Surface runoff, Turbidity, Glacier mass balance

149

The multitemporal behavior of soil loss by surface water erosion in the hydrographic basin of the river Mourão in the center-western region of the Paraná state, Brazil, is analyzed. Forecast was based on the application of the Universal Soil Loss Equation (USLE) with the data integration and estimates within an Geography Information System (GIS) environment. Results had shown high mean annual rain erosivity (10,000 MJ.mm.ha-1.h-1.year-1), with great concentration in January and December. As a rule, soils have average erodibilities, exception of Dystroferric Red Latisol (low class) and Dystrophic Red Argisol (high class). Although the topographic factor was high (>20), rates lower than 1 were predominant. Main land uses comprise temporal crops and pasture throughout the years. The watershed showed a natural potential for low surface erosion. When related to usage types, yearly soil loss was also low (<50 ton.ha-1.year-1), with more critical scores that reach rates higher than 150 ton.ha-1.year-1. Soil loss over the years did not provide great distinctions in distribution standards, although it becames rather intensified in some sectors, especially in the center-eastern and southwestern sections of the watershed.

Concepts: Water, Geographic information system, Soil, Erosion, Surface runoff, Geomorphology, Weathering, Universal Soil Loss Equation

147

In the Loess Plateau, soil erosion has not only caused serious ecological and environmental problems but has also impacted downstream areas. Therefore, a model is needed to guide the comprehensive control of soil erosion. In this study, we introduced the WEPP model to simulate soil erosion both at the slope and watershed scales. Our analyses showed that: the simulated values at the slope scale were very close to the measured. However, both the runoff and soil erosion simulated values at the watershed scale were higher than the measured. At the slope scale, under different coverage, the simulated erosion was slightly higher than the measured. When the coverage is 40%, the simulated results of both runoff and erosion are the best. At the watershed scale, the actual annual runoff of the Liudaogou watershed is 83m3; sediment content is 0.097 t/m3, annual erosion sediment 8.057t and erosion intensity 0.288 t ha-1 yr-1. Both the simulated values of soil erosion and runoff are higher than the measured, especially the runoff. But the simulated erosion trend is relatively accurate after the farmland is returned to grassland. We concluded that the WEPP model can be used to establish a reasonable vegetation restoration model and guide the vegetation restoration of the Loess Plateau.

Concepts: Sediment, Soil, Erosion, Silt, Surface runoff, Geomorphology, Loess Plateau, Deforestation

35

Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass-water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil-water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass-water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known.

Concepts: Mathematics, Systems theory, Feedback, Pattern, Australia, Surface runoff, Namibia, Infiltration

28

The effect of two fly ashes as soil amendment on the adsorption-desorption of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl)] and atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) was studied in alluvial and laterite soils. The adsorption data for both the herbicides fitted well the Freundlich equation, and Freundlich adsorption coefficient (K (f)) increased with an increase of fly ash amount. Both the fly ashes differed in their extent to increase herbicide sorption, and the effect was different in different soils. Atrazine was sorbed more in the soils/soils + fly ash mixtures than the metolachlor. The K (f) values showed significant correlation with the amount of fly ash amendment (correlation coefficient, R > 0.982). The desorption isotherms also fitted the Freundlich equation, and desorption showed hysteresis which increased with an increase in the content of fly ash amendment. The free energy change (ΔG) indicated that the sorption process is exothermic, spontaneous, and physical in nature. The study has shown that fly ash as soil amendment significantly increased the sorption of metolachlor and atrazine, but the effect is soil- and fly ash-specific.

Concepts: Soil, Adsorption, Gibbs free energy, Freundlich equation, Surface runoff, Herbicide, Atrazine, Herbicides

28

Dune slacks are a seasonal coastal wetland habitat, whose plant assemblages and soil properties are strongly linked to a fluctuating water table. Climate change is predicted to cause major shifts in sand dune hydrological regimes, yet we know remarkably little about the tolerance of these communities to change, and their precise hydrological requirements are poorly quantified. Dune slack vegetation and soils were sampled within five vegetation types across four west coast UK sites. Relationships between vegetation assemblages, and parameters of soil development (moisture, loss on ignition, pH, KCl extractable ions) and groundwater hydrological regime (annual maximum and minimum water levels and range, duration of flooding) were established to define the environmental tolerances of different communities. In multivariate analysis of the vegetation, the dominant gradient was hydrological: dry to wet, followed by a secondary soil development gradient: young calcareous organic-poor soils to acidic/neutral soils with greater organic matter contents. Most measured hydrological and soil variables explained a significant proportion of observed variation in species composition when tested individually, with the exception of soil nitrate and soil calcium concentrations. Maximum water level was the key hydrological variable, and soil moisture and soil pH were the key soil variables. All hydrological and soil parameters together explained 22.5% of the total species variation. There were significant differences in hydrological and soil parameters between community types, with only 40cm difference in mean annual minimum water levels (averaged over 4years) separating the wettest and the driest dune slack communities. Therefore, predicted declines in water level exceeding 100cm by 2080 are likely to have a major impact on the vegetation of these priority conservation habitats.

Concepts: Soil, Hydrology, Aquifer, Potassium, Maxima and minima, Surface runoff, Sand, Level

28

Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as agricultural or urban runoff and commercial activity.

Concepts: Oxygen, Water, Water pollution, Hydrology, Chemical oxygen demand, Surface runoff, Kuala Lumpur, Klang

27

The concentrations of toxic heavy metals-Cd and Pb and micronutrients-Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I-the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II-the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III-the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p < 0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd > Mn > Zn > Cu > Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II > stage III > stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.

Concepts: Water pollution, Soil, Zinc, Erosion, Irrigation, Field, Heavy metal music, Surface runoff

26

Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains.

Concepts: Agriculture, Water, Water pollution, Mississippi River, Surface runoff, Stormwater, Retention basin, Storm drain

25

Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species.

Concepts: Water pollution, Salmon, Oncorhynchus, Surface runoff, Columbia River, Stormwater, Coho salmon, Low impact development