SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Supertaster

30

Understanding the influence of taste perception on food choice has captured the interest of academics, industry, and the general public, the latter as evidenced by the extent of popular media coverage and use of the term supertaster. Supertasters are highly sensitive to the bitter tastant propylthiouracil (PROP) and its chemical relative phenylthiocarbamide. The well-researched differences in taste sensitivity to these bitter chemicals are partially controlled by variation in the TAS2R38 gene; however, this variation alone does not explain the supertaster phenomenon. It has been suggested that density of papillae, which house taste buds, may explain supertasting. To address the unresolved role of papillae, we used crowdsourcing in the museum-based Genetics of Taste Lab. This community lab is uniquely situated to attract both a large population of human subjects and host a team of citizen scientists to research population-based questions about human genetics, taste, and health. Using this model, we find that PROP bitterness is not in any way predicted by papillae density. This result holds within the whole sample, when divided into major diplotypes, and when correcting for age, sex, and genotype. Furthermore, it holds when dividing participants into oft-used taster status groups. These data argue against the use of papillae density in predicting taste sensitivity and caution against imprecise use of the term supertaster. Furthermore, it supports a growing volume of evidence that sets the stage for hypergeusia, a reconceptualization of heightened oral sensitivity that is not based solely on PROP or papillae density. Finally, our model demonstrates how community-based research can serve as a unique venue for both study participation and citizen science that makes scientific research accessible and relevant to people’s everyday lives.

Concepts: Scientific method, Gene, Genetics, Evolution, Prediction, Taste, Taste bud, Supertaster

28

BACKGROUND: We recently demonstrated the bitter taste receptor T2R38 upregulates sinonasal mucosal innate defense in response to gram-negative quorum-sensing molecules through increased nitric oxide production and mucociliary clearance. T2R38 was initially identified in the quest to understand the variability in bitter taste perception to the compound phenylthiocarbamide (PTC) and demonstrated to have polymorphisms generating diplotypes dividing people into PTC supertasters, heterozygotes (with variable PTC detection), and nontasters. We have further demonstrated that sinonasal epithelial cultures derived from supertasters significantly increase innate defenses in response to gram-negative quorum-sensing molecules compared with sinonasal cultures derived from heterozygotes and nontaster individuals. Based on this data, we hypothesize that supertasters are less likely to require sinus surgery compared with heterozygous or nontasters and that supertasters have improved surgical outcomes. METHODS: Banked sinonasal tissue samples from patients who had undergone primary functional endoscopic sinus surgery at the University of Pennsylvania or the Philadelphia Veterans Affairs Medical Center were genotyped for T2R38 and compared to the expected population distribution. Necessity for additional antibiotic therapy following the postoperative healing time frame was evaluated. RESULTS: A total of 28 patients were included in the study. Only 1 supertaster was identified (expected 5.6, p < 0.043). Additionally, 14 heterozygous and 13 nontaster patients were identified. CONCLUSION: This pilot study investigating the genetics of the bitter taste receptor T2R38 in the context of primary sinonasal surgery demonstrates supertaster patients are less likely to need surgical intervention for chronic rhinosinusitis. Additional study is necessary to ascertain postsurgical outcomes.

Concepts: Surgery, Sinusitis, Taste, Nitric oxide, Functional Endoscopic Sinus Surgery, Supertaster, Phenylthiocarbamide, TAS2R38

12

Research suggests a weaker sense of taste in people with obesity, with the assumption that this debilitated taste response increases the desire for more intensely tasting stimuli to compensate for decreased taste input. However, empirical testing of this supposition remains largely absent.

Concepts: Sensory system, Sense, Olfaction, Taste, Empirical research, Assumption of Mary, Ageusia, Supertaster

1

Taste is one of the main factors determining food choices. Differences in PROP bitter taste perception have been implicated in individual differences in food preferences and selection. The present study examined associations between, PROP phenotypes, self-reported food liking and TAS2R38 polymorphisms, the major gene implicated in PROP bitterness, in six different populations of the Caucasus and Central Asia, located along the ancient Silk Road. Differences in the distribution of PROP phenotypes across populations were detected, with a higher frequency of super tasters in Tajikistan (31.3%) and Armenia (39.0%) and a higher frequency of non tasters in Georgia (50.9%). While no relationships were observed between PROP phenotypes and food liking using standard statistical tests, we used an approach based on comparison of distance matrices derived from these data. The first matrix compared the food liking ratings of each population to all others pairwise using the Kruskal-Wallis test (at p<0.00063), and the second one compared the distribution of PROP phenotypes across all populations in a similar manner calculating the chi-square statistic as a distance measure. A strong correlation between the two matrices was found (Mantel test: r = 0.67, p-value = 0.03), suggesting that the pattern of food liking across populations was closely related to the distribution of PROP phenotypes. This same relationship was not observed when TAS2R38 genotypes were substituted for PROP phenotypes in this analysis. Our data suggest that a population-based approach utilizing distance matrices is a useful technique for detecting PROP-related differences in food liking and can be applied to other taste phenotypes.

Concepts: Statistical tests, Statistics, Non-parametric statistics, Taste, Iran, Central Asia, Silk Road, Supertaster

0

Animals must detect aversive compounds to survive. Bitter taste neurons express heterogeneous combinations of bitter receptors that diversify their response profiles, but this remains poorly understood. Here we describe groups of taste neurons in Drosophila that detect the same bitter compounds using unique combinations of gustatory receptors (GRs). These distinct complexes also confer responsiveness to non-overlapping sets of additional compounds. While either GR32a/GR59c/GR66a or GR22e/GR32a/GR66a heteromultimers are sufficient for lobeline, berberine, and denatonium detection, only GR22e/GR32a/GR66a responds to strychnine. Thus, despite minimal sequence-similarity, Gr22e and Gr59c show considerable but incomplete functional overlap. Since the gain- or loss-of-function of Gr22e or Gr59c alters bitter taste response profiles, we conclude a taste neuron’s specific combination of Grs determines its response profile. We suspect the heterogeneity of Gr expression in Drosophila taste neurons diversifies bitter compound detection, improving animal fitness under changing environmental conditions that present a variety of aversive compounds.

Concepts: Nervous system, Sensory system, Taste, Serotonin, Metabotropic receptor, Glycine receptor, Gustatory system, Supertaster

0

Taste blindness to 6-n-propylthiouracil (PROP) associates with increased fat preference and intake. No studies have matched a diet to a woman’s PROP phenotype to improve weight loss. This study investigated (1) whether PROP nontaster (NT) women would lose more weight following a low-carbohydrate (LC) diet than a low-fat (LF) diet, and (2) whether PROP supertaster (ST) women would lose more weight following a LF diet than a LC diet.

Concepts: Nutrition, Obesity, Randomized controlled trial, Adipose tissue, Woman, Dieting, Diet food, Supertaster

0

The goal of this work is to develop an automatic system for the evaluation of the gustatory sensitivity of patients using an electrophysiological recording of the response of bud cells to taste stimuli. In particular, the study aims to evaluate the effectiveness and limitations of supervised classifiers in the discrimination between subjects belonging to the three 6-n-propylthiouracil (PROP) taster categories (supertasters, medium tasters, and non-tasters), exploiting features extracted from electrophysiological recordings of the tongue. Thirty-nine subjects (equally divided into the three PROP status classes by standard non-objective scaling methods) underwent a non-invasive, differential, biopotential recording of their tongues during stimulation with PROP by using a custom-made, flexible, silver electrode. Two different classifiers were trained to recognize up to seven different features extracted from the recorded depolarization signal. The classification results indicate that the identified set of features allows to distinguish between PROP tasters and non-tasters (average accuracy of 80% ± 18% and up to 94% ± 15% when only supertasters and non-tasters are considered), but medium tasters were difficult to identify. However, these apparent classification errors are related to uncertainty in the labeling procedures, which are based on non-objective tests, in which the subjects provided borderline evaluations. Thus, using the proposed method, it is possible, for the first time, to automatically achieve objective PROP taster status identification with high accuracy. The simplicity of the recording technique allows for easy reproduction of the experimental setting; thus the technique can be used in future studies to evaluate other gustatory stimuli. The proposed approach represents the first objective and automatic method to directly measure human gustatory responses and a milestone for physiological taste studies, with applications ranging from basic science to food tasting evaluations.

Concepts: Evaluation, Sense, Recording, Taste, Tongue, Media technology, Gustatory system, Supertaster

0

Polymorphisms in bitter taste receptor gene TAS2R38 alter the ability to sense the intensity of bitterness of phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP). Genetic variation in sensitivity towards PTC and PROP may affect food preferences and susceptibility to certain diseases. This is the first study aimed at investigating frequency and distribution of TAS2R38 haplotypes in an Indian cohort. Additionally, we studied the association of TAS2R38 and PROP taster status with BMI and food preference. Three hundred and ninety three healthy adults who were 19-55years of age were selected as a convenience sample from 4 geographical regions of India. Single nucleotide polymorphisms (SNPs) of TAS2R38 (rs713598, s1726866 and rs10246939) were analyzed using polymerase chain reaction-restriction fragment length polymorphism. The prevalence of PAV/PAV diplotype was 9.9% and that of AVI/AVI diplotype was 43.76% among this Indian population. PROP status was determined on the basis of its threshold concentration of detecting bitterness, as evaluated by one-solution test. The PROP status revealed 25.95% supertasters, 32.06% medium tasters and 41.98% non-tasters (NT). BMI neither significantly (p>0.05) correlated with TAS2R38 genotypes nor with PROP taster status. Food preferences did not significantly (p>0.05) correlate with TAS2R38 diplotypes or PROP phenotypes.

Concepts: DNA, Gene, Genetics, Bioinformatics, Body mass index, Taste, Population genetics, Supertaster

0

Sinonasal biofilms have been demonstrated in specimens collected from chronic rhinosinusitis (CRS) patients. Mounting evidence suggests that biofilms contribute to therapeutically recalcitrant CRS. Recently, the bitter taste receptor T2R38 has been implicated in the regulation of the sinonasal mucosal innate immune response. TAS2R38 gene polymorphisms affect receptor functionality and contribute to variations seen in sinonasal innate defense as well as taste perception reflected in gustatory sensitivity to the bitter compound phenylthiocarbamide (PTC). In a population of CRS patients with active infection or inflammation, we sought to determine if a correlation between T2R38 phenotype and in vitro biofilm formation existed.

Concepts: Immune system, Bacteria, Innate immune system, Sinusitis, Sense, Taste, Biofilm, Supertaster

0

Previous studies show that children who are sensitive to the bitter taste of 6-n-propylthiouracil (PROP) report more frequent intake of sweets and less frequent intake of meats (savory fats) relative to children who are PROP insensitive. Laboratory studies are needed to confirm these findings. In this study, 79, 4-6 year-olds from diverse ethnicities attended 4 laboratory sessions, the last of which included a palatable buffet consisting of savory-fats (e.g. pizza), sweet-fats (e.g. cookies, cakes), and sweets (e.g. juices, candies). PROP phenotype was classified by two methods: 1) a common screening procedure to divide children into tasters and nontasters, and 2) a three-concentration method used to approximate PROP thresholds. Height and weight were measured and saliva was collected for genotyping TAS2R38, a bitter taste receptor related to the PROP phenotype. Data were analyzed by General Linear Model ANOVA with intake from savory fats, sweet-fats, and sweets as dependent variables and PROP status as the independent variable. BMI z-score, sex, age, and ethnicity were included as covariates. Adjusted energy intake from the food group ‘sweets’ at the test-meal was greater for tasters than for nontasters. PROP status did not influence children’s adjusted intake of savory-fats, but BMI z-score did. The TAS2R38 genotype did not impact intake at the test-meal. At a palatable buffet, PROP taster children preferentially consumed more sweets than nontaster children, while heavier children consumed more savory fats. These findings may have implications for understanding differences in susceptibility to hyperphagia.

Concepts: Taste, Ethnic group, Gustation, Supertaster