SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Superconductivity

172

Nonlinear and switchable metamaterials achieved by artificial structuring on the subwavelength scale have become a central topic in photonics research. Switching with only a few quanta of excitation per metamolecule, metamaterial’s elementary building block, is the ultimate goal, achieving which will open new opportunities for energy efficient signal handling and quantum information processing. Recently, arrays of Josephson junction devices have been proposed as a possible solution. However, they require extremely high levels of nanofabrication. Here we introduce a new quantum superconducting metamaterial which exploits the magnetic flux quantization for switching. It does not contain Josephson junctions, making it simple to fabricate and scale into large arrays. The metamaterial was manufactured from a high-temperature superconductor and characterized in the low intensity regime, providing the first observation of the quantum phenomenon of flux exclusion affecting the far-field electromagnetic properties of the metamaterial.

Concepts: Quantum mechanics, Physics, Condensed matter physics, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum, Brian David Josephson

165

In low dimensional cuprates several interesting phenomena, including high Tc superconductivity, are deeply connected to electron correlations on Cu and the presence of the Zhang-Rice (ZR) singlet state. Here, we report on direct spectroscopic observation of the ZR state responsible for the low-energy physical properties in two isostructural A-site ordered cuprate perovskites, CaCu3Co4O12 and CaCu3Cr4O12 as revealed by resonant soft x-ray absorption spectroscopy on the Cu L3,2- and O K-edges. These measurements reveal the signature of Cu in the high-energy 3+ (3d(8)), the typical 2+ (3d(9)), as well as features of the ZR singlet state (i.e., 3d(9)L, L denotes an oxygen hole). First principles GGA + U calculations affirm that the B-site cation controls the degree of Cu-O hybridization and, thus, the Cu valency. These findings introduce another avenue for the study and manipulation of cuprates, bypassing the complexities inherent to conventional chemical doping (i.e. disorder) that hinder the relevant physics.

Concepts: Electron, Spectroscopy, X-ray, Electromagnetic radiation, Condensed matter physics, X-ray absorption spectroscopy, Superconductivity, Absorption spectroscopy

165

Resistive random access memory based on the resistive switching phenomenon is emerging as a strong candidate for next generation non-volatile memory. So far, the resistive switching effect has been observed in many transition metal oxides, including strongly correlated ones, such as, cuprate superconductors, colossal magnetoresistant manganites and Mott insulators. However, up to now, no clear evidence of the possible relevance of strong correlation effects in the mechanism of resistive switching has been reported. Here, we study Pr0.7Ca0.3MnO3, which shows bipolar resistive switching. Performing micro-spectroscopic studies on its bare surface we are able to track the systematic electronic structure changes in both, the low and high resistance state. We find that a large change in the electronic conductance is due to field-induced oxygen vacancies, which drives a Mott metal-insulator transition at the surface. Our study demonstrates that strong correlation effects may be incorporated to the realm of the emerging oxide electronics.

Concepts: Oxygen, Oxide, Valence electron, Correlation and dependence, Superconductivity, Electrical resistance, Computer data storage, High-temperature superconductivity

165

Recently, superconductivity was found on semiconductor surface reconstructions induced by metal adatoms, promising a new field of research where superconductors can be studied from the atomic level.Here we measure the electron transport properties of the Si(111)-(¿7 × ¿3)-In surface near the resistive phase transition and analyze the data in terms of theories of two-dimensional (2D) superconductors.In the normal state, the sheet resistances (2D resistivities) R¿ of the samples decrease significantly between 20 and 5 K, suggesting the importance of the electron-electron scattering in electron transport phenomena.The decrease in R¿ is progressively accelerated just above the transition temperature (Tc) due to the direct (Aslamazov-Larkin term) and the indirect (Maki-Thompson term) superconducting fluctuation effects.A minute but finite resistance tail is found below Tc down to the lowest temperature of 1.8 K, which may be ascribed to a dissipation due to free vortex flow.The present study lays the ground for a future research aiming to find new superconductors in this class of materials.

Concepts: Quantum mechanics, Fundamental physics concepts, Condensed matter physics, Phase transition, Superconductivity, Electrical resistance, Heike Kamerlingh Onnes, History of superconductivity

140

We investigate the possibility of achieving high-temperature superconductivity in hydrides under pressure by inducing metallization of otherwise insulating phases through doping, a path previously used to render standard semiconductors superconducting at ambient pressure. Following this idea, we study H2O, one of the most abundant and well-studied substances, we identify nitrogen as the most likely and promising substitution/dopant. We show that for realistic levels of doping of a few percent, the phase X of ice becomes superconducting with a critical temperature of about 60 K at 150 GPa. In view of the vast number of hydrides that are strongly covalent bonded, but that remain insulating up to rather large pressures, our results open a series of new possibilities in the quest for novel high-temperature superconductors.

Concepts: Fundamental physics concepts, Condensed matter physics, Pressure, Superconductivity, Critical point, BCS theory, High-temperature superconductivity, Technological applications of superconductivity

139

We have produced a superconducting binary-elements intercalated graphite, CaxSr1-xCy, with the intercalation of Sr and Ca in highly-oriented pyrolytic graphite; the superconducting transition temperature, T c, was ~3 K. The superconducting CaxSr1-xCy sample was fabricated with the nominal x value of 0.8, i.e., Ca0.8Sr0.2Cy. Energy dispersive X-ray (EDX) spectroscopy provided the stoichiometry of Ca0.5(2)Sr0.5(2)Cy for this sample, and the X-ray powder diffraction (XRD) pattern showed that Ca0.5(2)Sr0.5(2)Cy took the SrC6-type hexagonal-structure rather than CaC6-type rhombohedral-structure. Consequently, the chemical formula of CaxSr1-xCy sample could be expressed as ‘Ca0.5(2)Sr0.5(2)C6’. The XRD pattern of Ca0.5(2)Sr0.5(2)C6 was measured at 0-31 GPa, showing that the lattice shrank monotonically with increasing pressure up to 8.6 GPa, with the structural phase transition occurring above 8.6 GPa. The pressure dependence of T c was determined from the DC magnetic susceptibility and resistance up to 15 GPa, which exhibited a positive pressure dependence of T c up to 8.3 GPa, as in YbC6, SrC6, KC8, CaC6 and Ca0.6K0.4C8. The further application of pressure caused the rapid decrease of T c. In this study, the fabrication and superconducting properties of new binary-elements intercalated graphite, CaxSr1-xCy, are fully investigated, and suitable combinations of elements are suggested for binary-elements intercalated graphite.

Concepts: Diffraction, Crystallography, Fundamental physics concepts, Graphite, X-ray crystallography, Phase transition, Superconductivity, X-ray scattering techniques

137

Experimental search for high-temperature ferroelectric perovskites is a challenging task due to the vast chemical space and lack of predictive guidelines. Here, we demonstrate a two-step machine learning approach to guide experiments in search of xBi[Formula: see text]O3-(1 - x)PbTiO3-based perovskites with high ferroelectric Curie temperature. These involve classification learning to screen for compositions in the perovskite structures, and regression coupled to active learning to identify promising perovskites for synthesis and feedback. The problem is challenging because the search space is vast, spanning ~61,500 compositions and only 167 are experimentally studied. Furthermore, not every composition can be synthesized in the perovskite phase. In this work, we predict x, y, Me', and Me″ such that the resulting compositions have both high Curie temperature and form in the perovskite structure. Outcomes from both successful and failed experiments then iteratively refine the machine learning models via an active learning loop. Our approach finds six perovskites out of ten compositions synthesized, including three previously unexplored {Me'Me″} pairs, with 0.2Bi(Fe0.12Co0.88)O3-0.8PbTiO3 showing the highest measured Curie temperature of 898 K among them.

Concepts: Chemistry, Science, Experiment, Hypothesis, Machine learning, Superconductivity, Perovskite

53

This work introduces an additive direct-write nanofabrication technique for producing extremely conductive gold nanostructures from a commercial metalorganic precursor. Gold content of 91 atomic % (at. %) was achieved by using water as an oxidative enhancer during direct-write deposition. A model was developed based on the deposition rate and the chemical composition, and it explains the surface processes that lead to the increases in gold purity and deposition yield. Co-injection of an oxidative enhancer enabled Focused Electron Beam Induced Deposition (FEBID)-a maskless, resistless deposition method for three dimensional (3D) nanostructures-to directly yield pure gold in a single process step, without post-deposition purification. Gold nanowires displayed resistivity down to 8.8 μΩ cm. This is the highest conductivity achieved so far from FEBID and it opens the possibility of applications in nanoelectronics, such as direct-write contacts to nanomaterials. The increased gold deposition yield and the ultralow carbon level will facilitate future applications such as the fabrication of 3D nanostructures in nanoplasmonics and biomolecule immobilization.

Concepts: Molecule, Atom, Chemical element, Carbon, Nanomaterials, Aluminium, Electrical conductivity, Superconductivity

30

The Josephson effect is perhaps the prototypical manifestation of macroscopic phase coherence, and forms the basis of a widely used electronic interferometer–the superconducting quantum interference device (SQUID). In 1965, Maki and Griffin predicted that the thermal current through a temperature-biased Josephson tunnel junction coupling two superconductors should be a stationary periodic function of the quantum phase difference between the superconductors: a temperature-biased SQUID should therefore allow heat currents to interfere, resulting in a thermal version of the electric Josephson interferometer. This phase-dependent mechanism of thermal transport has been the subject of much discussion but, surprisingly, has yet to be realized experimentally. Here we investigate heat exchange between two normal metal electrodes kept at different temperatures and tunnel-coupled to each other through a thermal ‘modulator’ (ref. 5) in the form of a direct-current SQUID. We find that heat transport in the system is phase dependent, in agreement with the original prediction. Our Josephson heat interferometer yields magnetic-flux-dependent temperature oscillations of up to 21 millikelvin in amplitude, and provides a flux-to-temperature transfer coefficient exceeding 60 millikelvin per flux quantum at 235 millikelvin. In addition to confirming the existence of a phase-dependent thermal current unique to Josephson junctions, our results point the way towards the phase-coherent manipulation of heat in solid-state nanocircuits.

Concepts: Condensed matter physics, Phase, Heat transfer, Superconductivity, Josephson effect, SQUID, Magnetic flux quantum, Brian David Josephson

29

A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound-all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the prospects for achieving room-temperature superconductivity in other hydrogen-based materials.

Concepts: Electron, Fundamental physics concepts, Hydrogen, Atom, Superconductivity, Absolute zero, BCS theory, High-temperature superconductivity