SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Sunscreen

201

The increase in reports of novel diseases in a wide range of ecosystems, both terrestrial and marine, has been linked to many factors including exposure to novel pathogens and changes in the global climate. Prevalence of skin cancer in particular has been found to be increasing in humans, but has not been reported in wild fish before. Here we report extensive melanosis and melanoma (skin cancer) in wild populations of an iconic, commercially-important marine fish, the coral trout Plectropomus leopardus. The syndrome reported here has strong similarities to previous studies associated with UV induced melanomas in the well-established laboratory fish model Xiphophorus. Relatively high prevalence rates of this syndrome (15%) were recorded at two offshore sites in the Great Barrier Reef Marine Park (GBRMP). In the absence of microbial pathogens and given the strong similarities to the UV-induced melanomas, we conclude that the likely cause was environmental exposure to UV radiation. Further studies are needed to establish the large scale distribution of the syndrome and confirm that the lesions reported here are the same as the melanoma in Xiphophorus, by assessing mutation of the EGFR gene, Xmrk. Furthermore, research on the potential links of this syndrome to increases in UV radiation from stratospheric ozone depletion needs to be completed.

Concepts: Cancer, Ultraviolet, Melanoma, Ozone depletion, Skin cancer, Sunburn, Sunscreen, Great Barrier Reef

172

Highly efficient room-temperature ultraviolet (UV) luminescence is obtained in heterostructures consisting of 10-nm-thick ultrathin ZnO films grown on Si nanopillars fabricated using self-assembled silver nanoislands as a natural metal nanomask during a subsequent dry etching process. Atomic layer deposition was applied for depositing the ZnO films on the Si nanopillars under an ambient temperature of 200°C. Based on measurements of photoluminescence (PL), an intensive UV emission corresponding to free-exciton recombination (approximately 3.31 eV) was observed with a nearly complete suppression of the defect-associated, broad-range visible emission peak. As compared to the ZnO/Si substrate, the almost five-times-of-magnitude enhancement in the intensity of PL, which peaked around 3.31 eV in the present ultrathin ZnO/Si nanopillars, is presumably attributed to the high surface/volume ratio inherent to the Si nanopillars. This allowed considerably more amount of ZnO material to be grown on the template and led to markedly more efficient intrinsic emission.

Concepts: Ultraviolet, Titanium dioxide, Luminescence, Zinc oxide, Sunscreen, Surface-area-to-volume ratio, Intensive and extensive properties, Nanopillar

169

Sunscreens protect the skin against erythemal radiation (Eer). But at the same time they reduce the effective radiation dose (EVD) responsible for the formation of previtamin D in the skin. The paper describes a calculation method for optimizing the ratio EVD/Eer behind sunscreens e.g. with SPF 5, 15 and 30 respectively. Taking into account that a majority of people in industrialized countries suffer from a shortage in vitamin D even in summer time, the ratio Evd/Eer is a new and important criterion for the quality of sunscreens. Furthermore the exposure time tvd needed per day for forming the equivalent of the recommended amount of 2000 IU of vitamin D per day for skin type 2 is estimated when sunscreens with different filter compositions are used. In vitro experiments show a significant increase of the conversion of 7-dehydrocholesterol (7-DHC) to previtamin D when exposed to artificial solar radiation behind an experimental sunscreen optimized for previtamin D production compared to a commercial sunscreen having the same SPF.

Concepts: Vitamin D, Ultraviolet, Sunlight, Skin, Sunburn, Sunscreen, Effective dose, Risks and benefits of sun exposure

168

In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias.

Concepts: Ultraviolet, Acid, Sunlight, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Brass

168

In this study, the authors report the production of nanocomposite-enhanced phase-change materials (NEPCMs) using the direct-synthesis method by mixing paraffin with alumina (Al2O3), titania (TiO2), silica (SiO2), and zinc oxide (ZnO) as the experimental samples. Al2O3, TiO2, SiO2, and ZnO were dispersed into three concentrations of 1.0, 2.0, and 3.0 wt.%. Through heat conduction and differential scanning calorimeter experiments to evaluate the effects of varying concentrations of the nano-additives on the heat conduction performance and thermal storage characteristics of NEPCMs, their feasibility for use in thermal storage was determined. The experimental results demonstrate that TiO2 is more effective than the other additives in enhancing both the heat conduction and thermal storage performance of paraffin for most of the experimental parameters. Furthermore, TiO2 reduces the melting onset temperature and increases the solidification onset temperature of paraffin. This allows the phase-change heat to be applicable to a wider temperature range, and the highest decreased ratio of phase-change heat is only 0.46%, compared to that of paraffin. Therefore, this study demonstrates that TiO2, added to paraffin to form NEPCMs, has significant potential for enhancing the thermal storage characteristics of paraffin.

Concepts: Temperature, Thermodynamics, Oxides, Titanium dioxide, Heat transfer, Zinc oxide, Sunscreen, Common oxide glass components

144

To develop a novel plasmonic nanosensing technique to monitor the exposure levels of UV light for sunlight disease prevention.

Concepts: Ultraviolet, Nanoparticle, Sun, Sunlight, Gold, Sunburn, Sunscreen, Light therapy

127

Prolonged tomato consumption can mitigate ultraviolet (UV) light induced sunburn via unknown mechanisms. Dietary carotenoids distributed to skin are hypothesized to protect skin against UV-induced damage, although other phytochemicals may play a role. We hypothesize that tomato consumption would protect against skin cancer. SKH-1 hairless and immunocompetent mice (n = 180) were fed AIN-93G or AIN-93G + 10% tangerine or red tomato powder for 35 weeks. From weeks 11-20, mice (n = 120) were exposed to 2240 J/m(2) UV-B light, 3x/week, and tumors were tracked weekly. Control mice were fed the same diets but not exposed to UV. Tumor number was significantly lower in male mice consuming red tomato diets (1.73 ± 0.50, P = 0.015) or pooled tomato diets (2.03 ± 0.45, P = 0.017) compared to controls (4.04 ± 0.65). Carotenoid levels in plasma and skin were quantitated, with total lycopene higher in skin of tangerine fed animals despite a lower dose. Metabolomic analyses elucidated compounds derived from tomato glycoalkaloids (including tomatidine and hydroxylated-tomatidine) as significantly different metabolites in skin after tomato exposure. Here, we describe that tomato consumption can modulate risk for keratinocyte carcinomas; however, the role of the newly identified specific phytochemicals possibly responsible for this action require further investigation.

Concepts: Cancer, Ultraviolet, Squamous cell carcinoma, Tomato, Sunscreen, Sun tanning, Lycopene, Ultraviolet germicidal irradiation

65

Benzophenone-3 (BP-3; oxybenzone) is an ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet light. Oxybenzone is an emerging contaminant of concern in marine environments-produced by swimmers and municipal, residential, and boat/ship wastewater discharges. We examined the effects of oxybenzone on the larval form (planula) of the coral Stylophora pistillata, as well as its toxicity in vitro to coral cells from this and six other coral species. Oxybenzone is a photo-toxicant; adverse effects are exacerbated in the light. Whether in darkness or light, oxybenzone transformed planulae from a motile state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of oxybenzone. Oxybenzone is a genotoxicant to corals, exhibiting a positive relationship between DNA-AP lesions and increasing oxybenzone concentrations. Oxybenzone is a skeletal endocrine disruptor; it induced ossification of the planula, encasing the entire planula in its own skeleton. The LC50 of planulae exposed to oxybenzone in the light for an 8- and 24-h exposure was 3.1 mg/L and 139 µg/L, respectively. The LC50s for oxybenzone in darkness for the same time points were 16.8 mg/L and 779 µg/L. Deformity EC20 levels (24 h) of planulae exposed to oxybenzone were 6.5 µg/L in the light and 10 µg/L in darkness. Coral cell LC50s (4 h, in the light) for 7 different coral species ranges from 8 to 340 µg/L, whereas LC20s (4 h, in the light) for the same species ranges from 0.062 to 8 µg/L. Coral reef contamination of oxybenzone in the U.S. Virgin Islands ranged from 75 µg/L to 1.4 mg/L, whereas Hawaiian sites were contaminated between 0.8 and 19.2 µg/L. Oxybenzone poses a hazard to coral reef conservation and threatens the resiliency of coral reefs to climate change.

Concepts: Algae, Ultraviolet, Coral, Coral reef, Coral bleaching, Cnidaria, Sunscreen, Coral reefs

55

UV light is an established carcinogen, yet evidence suggests that UV-seeking behavior has addictive features. Following UV exposure, epidermal keratinocytes synthesize proopiomelanocortin (POMC) that is processed to melanocyte-stimulating hormone, inducing tanning. We show that, in rodents, another POMC-derived peptide, β-endorphin, is coordinately synthesized in skin, elevating plasma levels after low-dose UV. Increases in pain-related thresholds are observed and reversed by pharmacologic opioid antagonism. Opioid blockade also elicits withdrawal signs after chronic UV exposure. This effect was sufficient to guide operant behavioral choices to avoidance of opioid withdrawal (conditioned place aversion). These UV-induced nociceptive and behavioral effects were absent in β-endorphin knockout mice and in mice lacking p53-mediated POMC induction in epidermal keratinocytes. Although primordial UV addiction, mediated by the hedonic action of β-endorphin and anhedonic effects of withdrawal, may theoretically have enhanced evolutionary vitamin D biosynthesis, it now may contribute to the relentless rise in skin cancer incidence in humans. PAPERCLIP:

Concepts: Vitamin D, Cancer, Ultraviolet, Morphine, Drug addiction, Addiction, Heroin, Sunscreen

44