SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Sunlight

261

Countershading was one of the first proposed mechanisms of camouflage [1, 2]. A dark dorsum and light ventrum counteract the gradient created by illumination from above, obliterating cues to 3D shape [3-6]. Because the optimal countershading varies strongly with light environment [7-9], pigmentation patterns give clues to an animal’s habitat. Indeed, comparative evidence from ungulates [9] shows that interspecific variation in countershading matches predictions: in open habitats, where direct overhead sunshine dominates, a sharp dark-light color transition high up the body is evident; in closed habitats (e.g., under forest canopy), diffuse illumination dominates and a smoother dorsoventral gradation is found. We can apply this approach to extinct animals in which the preservation of fossil melanin allows reconstruction of coloration [10-15]. Here we present a study of an exceptionally well-preserved specimen of Psittacosaurus sp. from the Chinese Jehol biota [16, 17]. This Psittacosaurus was countershaded [16] with a light underbelly and tail, whereas the chest was more pigmented. Other patterns resemble disruptive camouflage, whereas the chin and jugal bosses on the face appear dark. We projected the color patterns onto an anatomically accurate life-size model in order to assess their function experimentally. The patterns are compared to the predicted optimal countershading from the measured radiance patterns generated on an identical uniform gray model in direct versus diffuse illumination. These studies suggest that Psittacosaurus sp. inhabited a closed habitat such as a forest with a relatively dense canopy. VIDEO ABSTRACT.

Concepts: Habitat, Light, Sunlight, Color, Lighting, Pigment, Paleontology, Dinosaur

174

Airborne-mediated microbial diseases such as influenza and tuberculosis represent major public health challenges. A direct approach to prevent airborne transmission is inactivation of airborne pathogens, and the airborne antimicrobial potential of UVC ultraviolet light has long been established; however, its widespread use in public settings is limited because conventional UVC light sources are both carcinogenic and cataractogenic. By contrast, we have previously shown that far-UVC light (207-222 nm) efficiently inactivates bacteria without harm to exposed mammalian skin. This is because, due to its strong absorbance in biological materials, far-UVC light cannot penetrate even the outer (non living) layers of human skin or eye; however, because bacteria and viruses are of micrometer or smaller dimensions, far-UVC can penetrate and inactivate them. We show for the first time that far-UVC efficiently inactivates airborne aerosolized viruses, with a very low dose of 2 mJ/cm2 of 222-nm light inactivating >95% of aerosolized H1N1 influenza virus. Continuous very low dose-rate far-UVC light in indoor public locations is a promising, safe and inexpensive tool to reduce the spread of airborne-mediated microbial diseases.

Concepts: DNA, Bacteria, Microbiology, Virus, Influenza, Sunlight, Skin, Influenza A virus subtype H1N1

170

Sunscreens protect the skin against erythemal radiation (Eer). But at the same time they reduce the effective radiation dose (EVD) responsible for the formation of previtamin D in the skin. The paper describes a calculation method for optimizing the ratio EVD/Eer behind sunscreens e.g. with SPF 5, 15 and 30 respectively. Taking into account that a majority of people in industrialized countries suffer from a shortage in vitamin D even in summer time, the ratio Evd/Eer is a new and important criterion for the quality of sunscreens. Furthermore the exposure time tvd needed per day for forming the equivalent of the recommended amount of 2000 IU of vitamin D per day for skin type 2 is estimated when sunscreens with different filter compositions are used. In vitro experiments show a significant increase of the conversion of 7-dehydrocholesterol (7-DHC) to previtamin D when exposed to artificial solar radiation behind an experimental sunscreen optimized for previtamin D production compared to a commercial sunscreen having the same SPF.

Concepts: Vitamin D, Ultraviolet, Sunlight, Skin, Sunburn, Sunscreen, Effective dose, Risks and benefits of sun exposure

170

Carotenoids are protective pigments present in many aquatic organisms that reduce the photooxidative stress induced by short-wavelenght solar radiation, yet increase their susceptibility to predators. Arctodiaptomus spinosus, a calanoid copepod typically found in many fishless shallow soda lakes, shows large between-lake differences in pigmentation. Here, we attribute these differences to the environmental state of these ecosystems, namely, ‘dark water’ lakes with submersed vegetation and turbid ‘white’ lakes lacking macrophytes. Copepod carotenoid concentration in the turbid ‘white’ lakes was significantly (about 20-fold) higher than in the ‘dark water’ ones, although the latter systems were characterized by higher transparency. In addition, males had on a dry weight basis around three times higher carotenoid concentrations than females. Mycosporine-like amino acids (direct UV screening substances) were found in all cases, but in low concentration. The environmental conditions in these ecosystems were largely shaped by the presence/absence of submersed macrophytes Thus, in the turbid lakes, the strong wind-driven mixis allows for copepods to be brought to the surface and being exposed to solar radiation, whereas in ‘dark water’ ones, macrophytes reduce water turbulence and additionally provide shelter. Our results explain the counter-intuitive notion of strong red pigmentation in copepods from a turbid ecosystem and suggest that factors other than high UV transparency favor carotenoid accumulation in zooplankton.

Concepts: Ultraviolet, Acid, Concentration, Water pollution, Sunlight, Pigment, Pigments, Calanoida

168

In this study, zinc oxide (ZnO) nanorod arrays were synthesized using a simple hydrothermal reaction on ZnO seeds/n-silicon substrate. Several parameters were studied, including the heat-treatment temperature to produce ZnO seeds, zinc nitrate concentration, pH of hydrothermal reaction solution, and hydrothermal reaction time. The optimum heat-treatment temperature to produce uniform nanosized ZnO seeds was 400°C. The nanorod dimensions depended on the hydrothermal reaction parameters. The optimum hydrothermal reaction parameters to produce blunt tip-like nanorods (770 nm long and 80 nm in top diameter) were 0.1 M zinc nitrate, pH 7, and 4 h of growth duration. Phase analysis studies showed that all ZnO nanorods exhibited a strong (002) peak. Thus, the ZnO nanorods grew in a c-axis preferred orientation. A strong ultraviolet (UV) emission peak was observed for ZnO nanorods grown under optimized parameters with a low, deep-level emission peak, which indicated high optical property and crystallinity of the nanorods. The produced ZnO nanorods were also tested for their UV-sensing properties. All samples responded to UV light but with different sensing characteristics. Such different responses could be attributed to the high surface-to-volume ratio of the nanorods that correlated with the final ZnO nanorods morphology formed at different synthesis parameters. The sample grown using optimum synthesis parameters showed the highest responsivity of 0.024 A/W for UV light at 375 nm under a 3 V bias.

Concepts: Ultraviolet, Acid, Sunlight, Zinc, Titanium dioxide, Zinc oxide, Sunscreen, Brass

144

To develop a novel plasmonic nanosensing technique to monitor the exposure levels of UV light for sunlight disease prevention.

Concepts: Ultraviolet, Nanoparticle, Sun, Sunlight, Gold, Sunburn, Sunscreen, Light therapy

106

Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels. This pathway is activated at physiological intensities of light that penetrate the skin on a sunny day. Daily exposure of differentiated adipocytes to blue light resulted in decreased lipid droplet size, increased basal lipolytic rate and alterations in adiponectin and leptin secretion. Our results suggest that scWAT function may be directly under the influence of ambient sunlight exposure and may have important implications for our current understanding of adipocyte biology. (150 words).

Concepts: Ultraviolet, Light, Obesity, Fat, Adipose tissue, Sunlight, Adipocyte, Visible spectrum

103

We report on ultraviolet (UV) light induced increases in the UV optical density of thin and optically transparent crystalline DNA films formed through self assembly. The films are comprised of closely packed, multi-faceted and sub micron sized crystals. UV-Vis spectrophotometry reveals that DNA films with surface densities up to 0.031 mg/mm(2) can reduce the transmittance of incident UVC and UVB light by up to 90%, and UVA transmittance by up to 20%. Subsequent and independent film irradiation with either UVA or UVB dosages upwards of 80 J/cm(2) both reduce UV transmittance, with reductions scaling monotonically with UV dosage. To date the induction of a hyperchromic effect has been demonstrated using heat, pH, high salt mediums, and high energy ionising radiation. Both hyperchromicity and increased light scattering could account for the increased film optical density after UV irradiation. Additional characterisation of the films reveal they are highly absorbent and hygroscopic. When coated on human skin, they are capable of slowing water evaporation and keeping the tissue hydrated for extended periods of time.

Concepts: Ionizing radiation, Ultraviolet, Optics, Electromagnetic radiation, Optical fiber, Electromagnetic spectrum, Sunlight, Human skin color

98

This study evaluates the influence of nightly pulsed-xenon ultraviolet light disinfection and dedicated housekeeping staff on surgical site infection (SSI) rates. SSIs in class I procedures were reduced by 46% (P = .0496), with a potential cost savings of $478,055. SSIs in class II procedures increased by 22.9%, but this was not significant (P = .6973). Based on these results, it appears that the intervention reduces SSI rates in clean (class I), but not clean-contaminated (class II) procedures.

Concepts: Ultraviolet, Sun, Hydrogen, Laser, Sunlight, Antiseptic, Class II railroad, Light therapy

88

A current threat to the marine ecosystem is the high level of solar ultraviolet radiation (UV). Large whales have recently been shown to suffer sun-induced skin damage from continuous UV exposure. Genotoxic consequences of such exposure remain unknown for these long-lived marine species, as does their capacity to counteract UV-induced insults. We show that UV exposure induces mitochondrial DNA damage in the skin of seasonally sympatric fin, sperm, and blue whales and that this damage accumulates with age. However, counteractive molecular mechanisms are markedly different between species. For example, sperm whales, a species that remains for long periods at the sea surface, activate genotoxic stress pathways in response to UV exposure whereas the paler blue whale relies on increased pigmentation as the season progresses. Our study also shows that whales can modulate their responses to fluctuating levels of UV, and that different evolutionary constraints may have shaped their response strategies.

Concepts: DNA, Mutation, Ultraviolet, Sun, Sunlight, Titanium dioxide, Mutagen, Humpback whale