SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Stratosphere

166

In this paper we present a new method for retrieving tropospheric NO2 Vertical Column Density (VCD) from zenith-sky Differential Optical Absorption Spectroscopy (DOAS) measurements using mobile observations. This method was used during three days in the summer of 2011 in Romania, being to our knowledge the first mobile DOAS measurements peformed in this country. The measurements were carried out over large and different areas using a mobile DOAS system installed in a car. We present here a step-by-step retrieval of tropospheric VCD using complementary observations from ground and space which take into account the stratospheric contribution, which is a step forward compared to other similar studies. The detailed error budget indicates that the typical uncertainty on the retrieved NO2tropospheric VCD is less than 25%. The resulting ground-based data set is compared to satellite measurements from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2). For instance, on 18 July 2011, in an industrial area located at 47.03°N, 22.45°E, GOME-2 observes a tropospheric VCD value of (3.4 ± 1.9) × 1015 molec./cm2, while average mobile measurements in the same area give a value of (3.4 ± 0.7) × 1015 molec./cm2. On 22 August 2011, around Ploiesti city (44.99°N, 26.1°E), the tropospheric VCD observed by satellites is (3.3 ± 1.9) × 1015 molec./cm2 (GOME-2) and (3.2 ± 3.2) × 1015 molec./cm2 (OMI), while average mobile measurements give (3.8 ± 0.8) × 1015 molec./cm2. Average ground measurements over “clean areas”, on 18 July 2011, give (2.5 ± 0.6) × 1015 molec./cm2 while the satellite observes a value of (1.8 ± 1.3) × 1015 molec./cm2.

Concepts: Scientific method, Observation, Philosophy of science, Hypothesis, Absorption, Knowledge, Absorption spectroscopy, Stratosphere

68

Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multimodel archive and multiple observational datasets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present evidence that a human-caused signal can also be identified relative to the larger “total” natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere.

Concepts: Earth, Climate, Observation, Gas, Atmosphere, Venus, Stratosphere, Troposphere

40

This study investigates the role of the eleven-year solar cycle on the Arctic climate during 1979-2016. It reveals that during those years, when the winter solar sunspot number (SSN) falls below 1.35 standard deviations (or mean value), the Arctic warming extends from the lower troposphere to high up in the upper stratosphere and vice versa when SSN is above. The warming in the atmospheric column reflects an easterly zonal wind anomaly consistent with warm air and positive geopotential height anomalies for years with minimum SSN and vice versa for the maximum. Despite the inherent limitations of statistical techniques, three different methods - Compositing, Multiple Linear Regression and Correlation - all point to a similar modulating influence of the sun on winter Arctic climate via the pathway of Arctic Oscillation. Presenting schematics, it discusses the mechanisms of how solar cycle variability influences the Arctic climate involving the stratospheric route. Compositing also detects an opposite solar signature on Eurasian snow-cover, which is a cooling during Minimum years, while warming in maximum. It is hypothesized that the reduction of ice in the Arctic and a growth in Eurasia, in recent winters, may in part, be a result of the current weaker solar cycle.

Concepts: Statistics, Sun, Standard deviation, Atmosphere, Meteorology, Stratosphere, Troposphere, Ozone layer

26

Gravity waves (disturbances to the density structure of the atmosphere whose restoring forces are gravity and buoyancy) comprise the principal form of energy exchange between the lower and upper atmosphere. Wave breaking drives the mean upper atmospheric circulation, determining boundary conditions to stratospheric processes, which in turn influence tropospheric weather and climate patterns on various spatial and temporal scales. Despite their recognized importance, very little is known about upper-level gravity wave characteristics. The knowledge gap is mainly due to lack of global, high-resolution observations from currently available satellite observing systems. Consequently, representations of wave-related processes in global models are crude, highly parameterized, and poorly constrained, limiting the description of various processes influenced by them. Here we highlight, through a series of examples, the unanticipated ability of the Day/Night Band (DNB) on the NOAA/NASA Suomi National Polar-orbiting Partnership environmental satellite to resolve gravity structures near the mesopause via nightglow emissions at unprecedented subkilometric detail. On moonless nights, the Day/Night Band observations provide all-weather viewing of waves as they modulate the nightglow layer located near the mesopause (∼90 km above mean sea level). These waves are launched by a variety of physical mechanisms, ranging from orography to convection, intensifying fronts, and even seismic and volcanic events. Cross-referencing the Day/Night Band imagery with conventional thermal infrared imagery also available helps to discern nightglow structures and in some cases to attribute their sources. The capability stands to advance our basic understanding of a critical yet poorly constrained driver of the atmospheric circulation.

Concepts: Earth, Climate, Atmosphere, Waves, Stratosphere, Gravitational wave, Gravity wave, Water waves

23

Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of ‘unknown unknowns’ exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment-provisionally titled the stratospheric controlled perturbation experiment-is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper’s scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering.

Concepts: Risk, Sun, Chemistry, Science, Experiment, Atmosphere, Uncertainty, Stratosphere

23

We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing.

Concepts: Climate, Climate change, Atmosphere, Ozone depletion, Stratosphere, Troposphere, Ozone layer, Ozone

22

Climate simulations that consider injection into the atmosphere of 15,000 Tg of soot, the amount estimated to be present at the Cretaceous-Paleogene boundary, produce what might have been one of the largest episodes of transient climate change in Earth history. The observed soot is believed to originate from global wildfires ignited after the impact of a 10-km-diameter asteroid on the Yucatán Peninsula 66 million y ago. Following injection into the atmosphere, the soot is heated by sunlight and lofted to great heights, resulting in a worldwide soot aerosol layer that lasts several years. As a result, little or no sunlight reaches the surface for over a year, such that photosynthesis is impossible and continents and oceans cool by as much as 28 °C and 11 °C, respectively. The absorption of light by the soot heats the upper atmosphere by hundreds of degrees. These high temperatures, together with a massive injection of water, which is a source of odd-hydrogen radicals, destroy the stratospheric ozone layer, such that Earth’s surface receives high doses of UV radiation for about a year once the soot clears, five years after the impact. Temperatures remain above freezing in the oceans, coastal areas, and parts of the Tropics, but photosynthesis is severely inhibited for the first 1 y to 2 y, and freezing temperatures persist at middle latitudes for 3 y to 4 y. Refugia from these effects would have been very limited. The transient climate perturbation ends abruptly as the stratosphere cools and becomes supersaturated, causing rapid dehydration that removes all remaining soot via wet deposition.

Concepts: Oxygen, Earth, Sun, Climate, Sunlight, Atmosphere, Stratosphere, Ozone layer

14

Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013.

Concepts: Atmosphere, Chlorine, Ozone depletion, Stratosphere, Ozone layer, Ozone, Chlorofluorocarbon, Montreal Protocol

10

Absorption of solar radiation by stratospheric ozone affects atmospheric dynamics and chemistry, and sustains life on Earth by preventing harmful radiation from reaching the surface. Significant ozone losses due to increases in the abundances of ozone depleting substances (ODSs) were first observed in Antarctica in the 1980s. Losses deepened in following years but became nearly flat by around 2000, reflecting changes in global ODS emissions. Here we show robust evidence that Antarctic ozone has started to recover in both spring and summer, with a recovery signal identified in springtime ozone profile and total column measurements at 99% confidence for the first time. Continuing recovery is expected to impact the future climate of that region. Our results demonstrate that the Montreal Protocol has indeed begun to save the Antarctic ozone layer.

Concepts: Sun, Atmosphere, Ozone depletion, Stratosphere, Ozone layer, Ozone, Chlorofluorocarbon, Montreal Protocol

10

Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as ‘exceptional events’, which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<-1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events.

Concepts: Earth, United States, Weather, Atmosphere, Volcano, Greenhouse gas, Los Angeles, Stratosphere