SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Stomach

175

Animals are primarily limited by their capacity to acquire food, yet digestive performance also conditions energy acquisition, and ultimately fitness. Optimal foraging theory predicts that organisms feeding on patchy resources should maximize their food loads within each patch, and should digest these loads quickly to minimize travelling costs between food patches. We tested the prediction of high digestive performance in wandering albatrosses, which can ingest prey of up to 3 kg, and feed on highly dispersed food resources across the southern ocean. GPS-tracking of 40 wandering albatrosses from the Crozet archipelago during the incubation phase confirmed foraging movements of between 475-4705 km, which give birds access to a variety of prey, including fishery wastes. Moreover, using miniaturized, autonomous data recorders placed in the stomach of three birds, we performed the first-ever measurements of gastric pH and temperature in procellariformes. These revealed surprisingly low pH levels (average 1.50±0.13), markedly lower than in other seabirds, and comparable to those of vultures feeding on carrion. Such low stomach pH gives wandering albatrosses a strategic advantage since it allows them a rapid chemical breakdown of ingested food and therefore a rapid digestion. This is useful for feeding on patchy, natural prey, but also on fishery wastes, which might be an important additional food resource for wandering albatrosses.

Concepts: Eating, Food, Stomach, PH, Digestion, Gastric acid, Optimal foraging theory, Foraging

171

Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.

Concepts: Protein, Digestive system, Epithelium, Aldosterone, Stomach, Sodium, Laboratory rat, Epithelial sodium channel

169

Chronic inflammation plays a causal role in gastric tumor initiation. The identification of predictive biomarkers from gastric inflammation to tumorigenesis will help us to distinguish gastric cancer from atrophic gastritis and establish the diagnosis of early-stage gastric cancer. Phospholipase C epsilon 1 (PLCε1) is reported to play a vital role in inflammation and tumorigenesis. This study was aimed to investigate the clinical significance of PLCε1 in the initiation and progression of gastric cancer.

Concepts: Cancer, Oncology, Stomach, Helicobacter pylori, Gastritis, Intrinsic factor, Pernicious anemia, Atrophic gastritis

168

Motility helps many pathogens swim through the highly viscous intestinal mucus. Given the differing outcomes of Campylobacter concisus infection, the motility of eight C. concisus strains isolated from patients with Crohn’s disease (n=3), acute (n=3) and chronic (n=1) gastroenteritis and a healthy control (n=1) were compared. Following growth on solid or liquid media the eight strains formed two groups; however, the type of growth medium did not affect motility. In contrast, following growth in viscous liquid medium seven of the eight strains demonstrated significantly decreased motility. In media of increasing viscosities the motility of C. concisus UNSWCD had two marked increases at viscosities of 20.0 and 74.7 centipoises. Determination of the ability of UNSWCD to swim through a viscous medium, adhere to and invade intestinal epithelial cells showed that while adherence levels significantly decreased with increasing viscosity, invasion levels did not significantly change. In contrast, adherence to and invasion of UNSWCD to mucus-producing intestinal cells increased upon accumulation of mucus, as did bacterial aggregation. Given this aggregation, we determined the ability of the eight C. concisus strains to form biofilms, and showed that all strains formed biofilms. In conclusion, the finding that C. concisus strains could be differentiated into two groups based on their motility may suggest that strains with high motility have an increased ability to swim through the intestinal mucus and reach the epithelial layer.

Concepts: Bacteria, Epithelium, Stomach, Viscosity, Biofilm, Respiratory epithelium, Diarrhea, Intestinal epithelium

167

Acute pancreatitis (AP), especially severe acute pancreatitis often causes extra-pancreatic complications, such as acute gastrointestinal mucosal lesion (AGML) which is accompanied by a considerably high mortality, yet the pathogenesis of AP-induced AGML is still not fully understood. In this report, we investigated the alterations of serum components and gastric endocrine and exocrine functions in rats with experimental acute pancreatitis, and studied the possible contributions of these alterations in the pathogenesis of AGML. In addition, we explored the intervention effects of cannabinoid receptor agonist HU210 and antagonist AM251 on isolated and serum-perfused rat stomach. Our results showed that the AGML occurred after 5 h of AP replication, and the body homeostasis was disturbed in AP rat, with increased levels of pancreatic enzymes, lipopolysaccharide (LPS), proinflammtory cytokines and chemokines in the blood, and an imbalance of the gastric secretion function. Perfusing the isolated rat stomach with the AP rat serum caused morphological changes in the stomach, accompanied with a significant increment of pepsin and [H(+)] release, and increased gastrin and decreased somatostatin secretion. HU210 reversed the AP-serum-induced rat pathological alterations, including the reversal of transformation of the gastric morphology to certain degree. The results from this study prove that the inflammatory responses and the imbalance of the gastric secretion during the development of AP are responsible for the pathogenesis of AGML, and suggest the therapeutic potential of HU210 for AGML associated with acute pancreatitis.

Concepts: Pancreas, Stomach, Receptor antagonist, Cannabinoid receptor, Digestion, Gastric acid, Somatostatin, HU-210

163

Reducing the amount of Helicobacter pylori in the stomach by selective bacterial-bacterial cell interaction was sought as an effective and novel method for combating the stomach pathogen. Lactobacillus reuteri DSM17648 was identified as a highly specific binding antagonist to H. pylori among more than 700 wild-type strains of Lactobacillus species. Applying a stringent screening procedure, the strain DSM17648 was identified as selective binder to H. pylori cells under in vivo gastric conditions. The strain DSM17648 co-aggregates the pathogen in vivo and in vitro. The specific co-aggregation occurs between Lact. reuteri DSM17648 and different H. pylori strains and serotypes, as well as H. heilmannii, but not with Campylobacter jejuni or other commensal oral and intestinal bacteria. Lact. reuteri DSM17648 was shown in a proof-of-concept single-blinded, randomized, placebo-controlled pilot study to significantly reduce the load of H. pylori in healthy yet infected adults. Reducing the amount of H. pylori in the stomach by selective bacterial-bacterial cell interaction might be an effective and novel method for combating the stomach pathogen. Lact. reuteri DSM17648 might prove useful as an adhesion blocker in antibiotic-free H. pylori therapies.

Concepts: Bacteria, Gut flora, Microbiology, Stomach, Helicobacter pylori, Proteobacteria, Peptic ulcer, Lactobacillus

153

A small number of nomograms have been previously developed to predict the individual survival of patients who undergo curative resection for gastric cancer. However, all were derived from single high-volume centers. The aim of this study was to develop and validate a nomogram for gastric cancer patients using a multicenter database.

Concepts: Validation, Stomach, Nomogram

149

The motility change after per-oral endoscopic myotomy (POEM) in achalasia is currently focused on lower esophageal sphincter (LES). This study aims to investigate the correlation of motility response between distal and proximal esophagus after POEM.

Concepts: Digestive system, Stomach, Gastroesophageal reflux disease, Esophagus, Cardia, Achalasia, Esophageal cancer, Esophageal arteries

136

Gastric adenocarcinoma is globally the third leading cause of death due to malignancy, with the bulk of this disease burden being suffered by low and middle income countries (LMIC), especially in Asia. The majority of these cancers develop as a result of a chronic gastritis that arises in response to infection with the stomach-dwelling bacterium, Helicobacter pylori. A vaccine against this pathogen would therefore be a powerful tool for preventing gastric adenocarcinoma. However, notwithstanding a proof-of-concept that vaccination can protect children from acquisition of H. pylori infection, there are currently no advanced vaccine candidates with only a single vaccine in Phase I clinical trial. Further, the development of a vaccine against H. pylori is not a current strategic priority of major pharmaceutical companies despite the large global disease burden. Given the involvement of such companies is likely to be critical for late stage development, there is therefore a need for an increased appreciation of the burden of this disease in LMIC and more investment to reinvigorate research in H. pylori vaccine Research and Development.

Concepts: Immune system, Cancer, Bacteria, Stomach, Helicobacter pylori, Helicobacter, Gastritis

114

Treatment of esophageal disease can necessitate resection and reconstruction of the esophagus. Current reconstruction approaches are limited to utilization of an autologous conduit such as stomach, small bowel, or colon. A tissue engineered construct providing an alternative for esophageal replacement in circumferential, full thickness resection would have significant clinical applications. In the current study, we demonstrate that regeneration of esophageal tissue is feasible and reproducible in a large animal model using synthetic polyurethane electro-spun grafts seeded with autologous adipose-derived mesenchymal stem cells (aMSCs) and a disposable bioreactor. The scaffolds were not incorporated into the regrown esophageal tissue and were retrieved endoscopically. Animals underwent adipose tissue biopsy to harvest and expand autologous aMSCs for seeding on electro-spun polyurethane conduits in a bioreactor. Anesthetized pigs underwent full thickness circumferential resection of the mid-lower thoracic esophagus followed by implantation of the cell seeded scaffold. Results from these animals showed gradual structural regrowth of endogenous esophageal tissue, including squamous esophageal mucosa, submucosa, and smooth muscle layers with blood vessel formation. Scaffolds carrying autologous adipose-derived mesenchymal stem cells may provide an alternative to the use of a gastro-intestinal conduit for some patients following resection of the esophagus.

Concepts: Stem cell, Mesenchymal stem cell, Bone marrow, Muscle, Stomach, Smooth muscle, Adipocyte, Esophagus