Discover the most talked about and latest scientific content & concepts.

Concept: Stiffness


Smart hydrogels, or stimuli-responsive hydrogels, are three-dimensional networks composed of crosslinked hydrophilic polymer chains that are able to dramatically change their volume and other properties in response to environmental stimuli such as temperature, pH and certain chemicals. Rapid and significant response to environmental stimuli and high elasticity are critical for the versatility of such smart hydrogels. Here we report the synthesis of smart hydrogels which are rapidly responsive, highly swellable and stretchable, by constructing a nano-structured architecture with activated nanogels as nano-crosslinkers. The nano-structured smart hydrogels show very significant and rapid stimuli-responsive characteristics, as well as highly elastic properties to sustain high compressions, resist slicing and withstand high level of deformation, such as bending, twisting and extensive stretching. Because of the concurrent rapid and significant stimuli-response and high elasticity, these nano-structured smart hydrogels may expand the scope of hydrogel applications, and provide enhanced performance in their applications.

Concepts: Stiffness, Linear elasticity, Price elasticity of demand


Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal-mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal (LM) microdroplets into a soft elastomer, we achieve a ∼25× increase in thermal conductivity (4.7 ± 0.2 W⋅m(-1)⋅K(-1)) over the base polymer (0.20 ± 0.01 W⋅m(-1)·K(-1)) under stress-free conditions and a ∼50× increase (9.8 ± 0.8 W⋅m(-1)·K(-1)) when strained. This exceptional combination of thermal and mechanical properties is enabled by a unique thermal-mechanical coupling that exploits the deformability of the LM inclusions to create thermally conductive pathways in situ. Moreover, these materials offer possibilities for passive heat exchange in stretchable electronics and bioinspired robotics, which we demonstrate through the rapid heat dissipation of an elastomer-mounted extreme high-power LED lamp and a swimming soft robot.

Concepts: Temperature, Elasticity, Heat transfer, Hooke's law, Stiffness, Thermal conductivity, Heat, Young's modulus


Glasses with high elastic moduli have been in demand for many years because the thickness of such glasses can be reduced while maintaining its strength. Moreover, thinner and lighter glasses are desired for the fabrication of windows in buildings and cars, cover glasses for smart-phones and substrates in Thin-Film Transistor (TFT) displays. In this work, we report a 54Al2O3-46Ta2O5 glass fabricated by aerodynamic levitation which possesses one of the highest elastic moduli and hardness for oxide glasses also displaying excellent optical properties. The glass was colorless and transparent in the visible region, and its refractive index nd was as high as 1.94. The measured Young’s modulus and Vickers hardness were 158.3 GPa and 9.1 GPa, respectively, which are comparable to the previously reported highest values for oxide glasses. Analysis made using (27)Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) spectroscopy revealed the presence of a significantly large fraction of high-coordinated Al in addition to four-coordinated Al in the glass. The high elastic modulus and hardness are attributed to both the large cationic field strength of Ta(5+) ions and the large dissociation energies per unit volume of Al2O3 and Ta2O5.

Concepts: Glass, Tensile strength, Elastic modulus, Light, Hardness, Stiffness, Nuclear magnetic resonance, Young's modulus


The ability to accurately determine the elastic modulus of each layer of the human cornea is a crucial step in the design of better corneal prosthetics. In addition, knowledge of the elastic modulus will allow design of substrates with relevant mechanical properties for in vitro investigations of cellular behavior. Previously, we have reported elastic modulus values for the anterior basement membrane and Descemet’s membrane of the human cornea, the surfaces in contact with the epithelial and endothelial cells, respectively. We have completed the compliance profile of the stromal elements of the human cornea by obtaining elastic modulus values for Bowman’s layer and the anterior stroma. Atomic force microscopy (AFM) was used to determine the elastic modulus, which is a measure of the tissue stiffness and is inversely proportional to the compliance. The elastic response of the tissue allows analysis with the Hertz equation, a model that provides a relationship between the indentation force and depth and is a function of the tip radius and the modulus of the substrate. The elastic modulus values for each layer of the cornea are: 7.5±4.2 kPa (anterior basement membrane), 109.8±13.2 kPa (Bowman’s layer), 33.1±6.1 kPa (anterior stroma), and 50±17.8 kPa (Descemet’s membrane). These results indicate that the biophysical properties, including elastic modulus, of each layer of the human cornea are unique and may play a role in the maintenance of homeostasis as well as in the response to therapeutic agents and disease states. The data will also inform the design and fabrication of improved corneal prosthetics.

Concepts: Stiffness, Descemet's membrane, Eye, Bowman's membrane, Young's modulus, Endothelium, Epithelium, Cornea


The modulus of elasticity of soft materials on the nanoscale is of interest when studying thin films, nanocomposites, and biomaterials. Two novel modes of atomic force microscopy (AFM) have been introduced recently: HarmoniX and PeakForce QNM. Both modes produce distribution maps of the elastic modulus over the sample surface. Here we investigate the question of how quantitative these maps are when studying soft materials. Three different polymers with a macroscopic Young’s modulus of 0.6-0.7 GPa (polyurethanes) and 2.7 GPa (polystyrene) are analyzed using these new modes. The moduli obtained are compared to the data measured with the other commonly used techniques, dynamic mechanical analyzer (DMA), regular AFM, and nanoindenter. We show that the elastic modulus is overestimated in both the HarmoniX and PeakForce QNM modes when using regular sharp probes because of excessively overstressed material in the samples. We further demonstrate that both AFM modes can work in the linear stress-strain regime when using a relatively dull indentation probe (starting from ∼210 nm). The analysis of the elasticity models to be used shows that the JKR model should be used for the samples considered here instead of the DMT model, which is currently implemented in HarmoniX and PeakForce QNM modes. Using the JKR model and∼240 nm AFM probe in the PeakForce QNM mode, we demonstrate that a quantitative mapping of the elastic modulus of polymeric materials is possible. A spatial resolution of ∼50 nm and a minimum 2 to 3 nm indentation depth are achieved.

Concepts: Poisson's ratio, Polystyrene, Polymer, Hooke's law, Elasticity, Stiffness, Elastic modulus, Young's modulus


Laminar extrusion of wet masses was studied as a novel technology for the production of dosage forms for oral drug delivery. Extrusion was carried out with a ram extruder. Formulations contained either microcrystalline cellulose (MCC) or dicalcium phosphate (DCP) as diluent, hydroxypropyl methylcellulose (HPMC), lactose and water. Extrudates were characterized for their tensile strength, Young’s modulus of elasticity, water absorption, gel forming capacity and release of two model drugs, coumarin (COU) and propranolol hydrochloride (PRO). Cohesive extrudates could be produced with both filling materials (MCC and DCP) when HPMC was included as a binder at low amounts (3.3-4.5% w/w dry weight). Employing more HPMC, the elasticity of the wet masses increased which resulted in distinct surface defects. For MCC, the maximum HPMC amount that could be included in the formulations (15% w/w dry weight) did not affect the mechanical properties or decrease the drug release significantly. For DCP extrudates, the maximally effective HPMC amount was 30% (w/w dry weight) with influence on both the mechanical properties and drug release. This study suggests that laminar extrusion of wet masses is a feasible technique for the production of dosage forms for oral drug delivery.

Concepts: Pharmacology, Stiffness, Methyl cellulose, Elasticity, Tensile strength, Young's modulus, Elastic modulus, Cellulose


Drawbacks with the commonly used PMMA-based bone cements, such as an excessive elastic modulus and potentially toxic residual monomer content, motivate the development of alternative cements. In this work an attempt to prepare an injectable biomaterial based on isosorbide-alicyclic diol derived from renewable resources was presented. Two novel dimethacrylic monomers ISDGMA - 2,5-bis(2-hydroxy-3-methacryloyloxypropoxy)-1,4:3,6-dianhydro-sorbitol and ISETDMA - dimethacrylate of ethoxylated isosorbide were synthesized and used to prepare a series of low-viscosity compositions comprising bioactive nano-sized hydroxyapatite in the form of a two-paste system. Formulations exhibited a non-Newtonian shear-thinning behavior, setting times between 2.6min and 5.3min at 37°C and maximum curing temperatures of 65°C. Due to the hydrophilic nature of ISDGMA, cured compositions could absorb up to 13.6% water and as a result the Young’s modulus decreased from 1429MPa down to 470MPa. Both, poly(ISDGMA) and poly(ISETDMA) were subjected to a MTT study on mice fibroblasts (BALB/3T3) and gave relative cell viabilities above 70% of control. A selected model bone cement was additionally investigated using human osteosarcoma cells (SaOS-2) in an MTS test, which exhibited concentration-dependent cell viability. The preliminary results, presented in this work reveal the potential of two novel dimethacrylic monomers in the preparation of an injectable biomaterial for bone augmentation, which could overcome some of the drawbacks typical for conventional acrylic bone cement.

Concepts: Impulse excitation technique, Monomers, Tooth enamel, Stiffness, Elastic modulus, Hooke's law, Osteosarcoma, Young's modulus


Despite recent advances in the assembly of organic nanotubes, conferral of sequence-defined engineering and dynamic response characteristics to the tubules remains a challenge. Here we report a new family of highly designable and dynamic nanotubes assembled from sequence-defined peptoids through a unique “rolling-up and closure of nanosheet” mechanism. During the assembly process, amorphous spherical particles of amphiphilic peptoid oligomers crystallize to form well-defined nanosheets before folding to form single-walled nanotubes. These nanotubes undergo a pH-triggered, reversible contraction-expansion motion. By varying the number of hydrophobic residues of peptoids, we demonstrate tuning of nanotube wall thickness, diameter, and mechanical properties. Atomic force microscopy-based mechanical measurements show peptoid nanotubes are highly stiff (Young’s Modulus ~13-17 GPa). We further demonstrate the precise incorporation of functional groups within nanotubes and their applications in water decontamination and cellular adhesion and uptake. These nanotubes provide a robust platform for developing biomimetic materials tailored to specific applications.

Concepts: The Assembly, Pascal, Carbon nanotube, Stiffness, Functional group, Organic chemistry, Engineering, Young's modulus


Albite (NaAlSi3O8) is an aluminosilicate mineral. Its crystal structure consists of 3-D framework of Al and Si tetrahedral units. We have used Density Functional Theory to investigate the high-pressure behavior of the crystal structure and how it affects the elasticity of albite. Our results indicate elastic softening between 6-8 GPa. This is observed in all the individual elastic stiffness components. Our analysis indicates that the softening is due to the response of the three-dimensional tetrahedral framework, in particular by the pressure dependent changes in the tetrahedral tilts. At pressure <6 GPa, the PAW-GGA can be described by a Birch-Murnaghan equation of state with  = 687.4 Å(3),  = 51.7 GPa, and  = 4.7. The shear modulus and its pressure derivative are  = 33.7 GPa, and  = 2.9. At 1 bar, the azimuthal compressional and shear wave anisotropy  = 42.8%, and  = 50.1%. We also investigate the densification of albite to a mixture of jadeite and quartz. The transformation is likely to cause a discontinuity in density, compressional, and shear wave velocity across the crust and mantle. This could partially account for the Mohorovicic discontinuity in thickened continental crustal regions.

Concepts: Solid, Silicate minerals, Hooke's law, Stiffness, Fundamental physics concepts, Silicon, Mineral, Young's modulus


Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

Concepts: Glass, Array, Dissipation, Titanium, Stiffness, Toughness, Hardness, Materials science