SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Steroid

138

The recent discovery of bile acid (BA) receptors and a better delineation of the multiple roles of BAs in relevant biological processes have revamped BA research. The vasoactive actions of BAs were recognized more than three decades ago but the underlying mechanisms of the BA-induced vasorelaxation are now being clarified. Recent evidence shows that the BA receptors FXR and TGR5 are expressed in endothelial cells and may have important effects on both systemic and portal circulation. The availability of genetically engineered mice with ablation of BA receptors and the development of BA receptor agonists has allowed to explore the modulation of XR and, in a lesser extent, of TGR5 in the setting of portal hypertension (PHT) with promising results. In this review, we summarize recent data on how BA-dependent pathways influence several processes that impact in PHT and the preclinical data showing that pharmacological modulation of those pathways may hold promise in the treatment of PHT.

Concepts: DNA, Protein, Receptor antagonist, Cardiovascular system, Serotonin, Steroid, Inverse agonist, Vasoconstriction

67

The gut microbiota is found to be strongly associated with atherosclerosis (AS). Resveratrol (RSV) is a natural phytoalexin with anti-AS effects; however, its mechanisms of action remain unclear. Therefore, we sought to determine whether the anti-AS effects of RSV were related to changes in the gut microbiota. We found that RSV attenuated trimethylamine-N-oxide (TMAO)-induced AS in ApoE(-/-)mice. Meanwhile, RSV decreased TMAO levels by inhibiting commensal microbial trimethylamine (TMA) production via gut microbiota remodeling in mice. Moreover, RSV increased levels of the generaLactobacillusandBifidobacterium, which increased the bile salt hydrolase activity, thereby enhancing bile acid (BA) deconjugation and fecal excretion in C57BL/6J and ApoE(-/-)mice. This was associated with a decrease in ileal BA content, repression of the enterohepatic farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) axis, and increased cholesterol 7a-hydroxylase (CYP7A1) expression and hepatic BA neosynthesis. An FXR antagonist had the same effect on FGF15 and CYP7A1 expression as RSV, while an FXR agonist abolished RSV-induced alterations in FGF15 and CYP7A1 expression. In mice treated with antibiotics, RSV neither decreased TMAO levels nor increased hepatic BA synthesis. Additionally, RSV-induced inhibition of TMAO-caused AS was also markedly abolished by antibiotics. In conclusion, RSV attenuated TMAO-induced AS by decreasing TMAO levels and increasing hepatic BA neosynthesis via gut microbiota remodeling, and the BA neosynthesis was partially mediated through the enterohepatic FXR-FGF15 axis.

Concepts: Cholesterol, Bacteria, Gut flora, Bile, Bile acid, Steroid, Feces, Farnesoid X receptor

48

Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.

Concepts: Neuron, Hormone, Estrogen, Receptor, Gender, Estrogen receptor, Steroid, Dopamine

41

Performance-enhancing substances (PESs) are used commonly by children and adolescents in attempts to improve athletic performance. More recent data reveal that these same substances often are used for appearance-related reasons as well. PESs include both legal over-the-counter dietary supplements and illicit pharmacologic agents. This report reviews the current epidemiology of PES use in the pediatric population, as well as information on those PESs in most common use. Concerns regarding use of legal PESs include high rates of product contamination, correlation with future use of anabolic androgenic steroids, and adverse effects on the focus and experience of youth sports participation. The physical maturation and endogenous hormone production that occur in adolescence are associated with large improvements in strength and athletic performance. For most young athletes, PES use does not produce significant gains over those seen with the onset of puberty and adherence to an appropriate nutrition and training program.

Concepts: Metabolism, Hormone, Testosterone, Androgen, Adolescence, Steroid, Puberty, Anabolic steroid

38

Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol’s impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.

Concepts: Protein, Signal transduction, Cell membrane, Ligand, Membrane biology, G protein-coupled receptor, Metabotropic glutamate receptor, Steroid

36

Apolipoprotein E (Apo-E) is a major cholesterol carrier that supports lipid transport and injury repair in the brain. APOE polymorphic alleles are the main genetic determinants of Alzheimer disease (AD) risk: individuals carrying the ε4 allele are at increased risk of AD compared with those carrying the more common ε3 allele, whereas the ε2 allele decreases risk. Presence of the APOE ε4 allele is also associated with increased risk of cerebral amyloid angiopathy and age-related cognitive decline during normal ageing. Apo-E-lipoproteins bind to several cell-surface receptors to deliver lipids, and also to hydrophobic amyloid-β (Aβ) peptide, which is thought to initiate toxic events that lead to synaptic dysfunction and neurodegeneration in AD. Apo-E isoforms differentially regulate Aβ aggregation and clearance in the brain, and have distinct functions in regulating brain lipid transport, glucose metabolism, neuronal signalling, neuroinflammation, and mitochondrial function. In this Review, we describe current knowledge on Apo-E in the CNS, with a particular emphasis on the clinical and pathological features associated with carriers of different Apo-E isoforms. We also discuss Aβ-dependent and Aβ-independent mechanisms that link Apo-E4 status with AD risk, and consider how to design effective strategies for AD therapy by targeting Apo-E.

Concepts: Alzheimer's disease, Protein, Neuron, Mitochondrion, Cognition, Apolipoprotein E, Steroid, Cerebral amyloid angiopathy

30

Perineural inhibitors of tumor necrosis factor have recently generated intense interest as an alternative to epidural steroid injections for lumbosacral radiculopathy.

Concepts: Sciatica, Steroid, Epidural, Tumor necrosis factor-alpha

29

A direct link between Ca(2+) and lipid homeostasis has not been definitively demonstrated. In this study, we show that manipulation of ER Ca(2+) causes the re-distribution of a portion of the intracellular unesterified cholesterol to a pool that is not available to the SCAP-SREBP complex. The SREBP processing pathway in ER Ca(2+) depleted cells remained fully functional and responsive to changes in cellular cholesterol status but differed unexpectedly in basal activity. These findings establish the role of Ca(2+) in determining the reference set-point for controlling cellular lipid homeostasis. We propose that ER Ca(2+) status is an important determinant of the basal sensitivity of the sterol sensing mechanism inherent to the SREBP processing pathway.

Concepts: Cholesterol, Cell membrane, Steroid, Metaphysics, Lipid bilayer, Complex number, Sterol regulatory element binding protein, Determine

29

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.

Concepts: Signal transduction, Hormone, Estrogen, Receptor, Progesterone, Melanin, Steroid, Steroid hormone receptor

28

Current approaches to diagnosing testosterone deficiency do not consider the physiological consequences of various testosterone levels or whether deficiencies of testosterone, estradiol, or both account for clinical manifestations.

Concepts: Function, Estrogen, Testosterone, Estradiol, Steroid, Anabolic steroid