Discover the most talked about and latest scientific content & concepts.

Concept: Steroid


Elevated levels of blood cholesterol are associated with cardiovascular disease, a leading cause of morbidity and mortality worldwide. Current therapies for addressing elevated blood cholesterol can be inadequate, ineffective or associated with side effects; therefore, the search for additional therapies is ongoing. This study evaluated Daily Body Restore (DBR), a proprietary blend of 9 probiotic organisms of the genera Lactobacillus and Bifidobacterium, and 10 digestive enzymes, for its effects on cholesterol metabolism using an in vitro system and a mouse model.

Concepts: Cell, Bacteria, Metabolism, Nutrition, Atherosclerosis, Low-density lipoprotein, Steroid, Hypercholesterolemia


The calcium channel of sperm (CatSper) is essential for sperm hyperactivated motility and fertility. The steroid hormone progesterone activates CatSper of human sperm via binding to the serine hydrolase ABHD2. However, steroid specificity of ABHD2 has not been evaluated. Here, we explored whether steroid hormones to which human spermatozoa are exposed in the male and female genital tract influence CatSper activation via modulation of ABHD2. The results show that testosterone, estrogen, and hydrocortisone did not alter basal CatSper currents, whereas the neurosteroid pregnenolone sulfate exerted similar effects as progesterone, likely binding to the same site. However, physiological concentrations of testosterone and hydrocortisone inhibited CatSper activation by progesterone. Additionally, testosterone antagonized the effect of pregnenolone sulfate. We have also explored whether steroid-like molecules, such as the plant triterpenoids pristimerin and lupeol, affect sperm fertility. Interestingly, both compounds competed with progesterone and pregnenolone sulfate and significantly reduced CatSper activation by either steroid. Furthermore, pristimerin and lupeol considerably diminished hyperactivation of capacitated spermatozoa. These results indicate that (i) pregnenolone sulfate together with progesterone are the main steroids that activate CatSper and (ii) pristimerin and lupeol can act as contraceptive compounds by averting sperm hyperactivation, thus preventing fertilization.

Concepts: Cholesterol, Sperm, Estrogen, Testosterone, Spermatozoon, Progesterone, Steroid, Pregnenolone


BACKGROUND: Studies of prenatal exposure to sex steroid hormones predict autistic traits in children at 18 to 24 and at 96 months of age. However, it is not known whether postnatal exposure to these hormones has a similar effect. This study compares prenatal and postnatal sex steroid hormone levels in relation to autistic traits in 18 to 24-month-old children.Fetal testosterone (fT) and fetal estradiol (fE) levels were measured in amniotic fluid from pregnant women (n = 35) following routine second-trimester amniocentesis. Saliva samples were collected from these children when they reached three to four months of age and were analyzed for postnatal testosterone (pT) levels. Mothers were asked to complete the Quantitative Checklist for Autism in Toddlers (Q-CHAT), a measure of autistic traits in children 18 to 24 months old.Finding: fT (but not pT) levels were positively associated with scores on the Q-CHAT. fE and pT levels showed no sex differences and no relationships with fT levels. fT levels were the only variable that predicted Q-CHAT scores. CONCLUSIONS: These preliminary findings are consistent with the hypothesis that prenatal (but not postnatal) androgen exposure, coinciding with the critical period for sexual differentiation of the brain, is associated with the development of autistic traits in 18 to 24 month old toddlers. However, it is recognized that further work with a larger sample population is needed before the effects of postnatal androgen exposure on autistic traits can be ruled out. These results are also in line with the fetal androgen theory of autism, which suggests that prenatal, organizational effects of androgen hormones influence the development of autistic traits in later life.

Concepts: Pregnancy, Hormone, Estrogen, Testosterone, Glucocorticoid, Steroid, Amniotic fluid, Steroid hormone


Cytochrome P450 side-chain cleavage enzyme (CYP11A1) catalyses the first and rate-limiting step of steroidogenesis, the conversion of cholesterol to pregnenolone. CYP11A1 deficiency is commonly associated with adrenal insufficiency, and in 46,XY individuals, with variable degrees of disorder of sex development (DSD).

Concepts: Testosterone, Cytochrome P450, Steroid, CYP17A1


The disposition of ertugliflozin (PF-04971729), an orally active selective inhibitor of the sodium-dependent glucose cotransporter 2, was studied after a single 25-mg oral dose of [(14)C]-PF-04971729 to healthy human subjects. Mass balance was achieved with approximately 91% of the administered dose recovered in urine and feces. The total administered radioactivity excreted in feces and urine was 40.9% and 50.2%, respectively. The absorption of PF-04971729 in humans was rapid with a T(max) at ~ 1.0 h. Of the total radioactivity excreted in feces and urine, unchanged PF-04971729 collectively accounted for ~ 35.3% of the dose, suggestive of moderate metabolic elimination in humans. The principal biotransformation pathway involved glucuronidation of the glycoside hydroxyl groups to yield three regioisomeric metabolites M4a, M4b and M4c (~39.3% of the dose in urine) of which M4c was the major regioisomer (~31.7% of the dose). The structure of M4a and M4c were confirmed to be PF-04971729-4-O-β- and -3-O-β-glucuronide, respectively, via comparison of the HPLC retention time and mass spectra with authentic standards. A minor metabolic fate involved oxidation by cytochrome P450 to yield monohydroxylated metabolites M1 and M3 and des-ethyl PF-04971729 (M2), which accounted for ~5.2% of the dose in excreta. In plasma, unchanged PF-04971729 and the corresponding 4-O-β- (M4a) and 3-O-β- (M4c) glucuronides were the principal components, which accounted for 49.9, 12.2 and 24.1% of the circulating radioactivity. Overall, these data suggest that PF-04971729 is well absorbed in humans, and eliminated largely via glucuronidation.

Concepts: Alcohol, Metabolism, Nutrition, Cytochrome P450, Steroid, Pharmacokinetics, Carbohydrate, Excretion


Nuclear receptors are ligand-activated transcription factors and include the receptors for steroid hormones, lipophilic vitamins, sterols, and bile acids. These receptors serve as targets for development of myriad drugs that target a range of disorders. Classically defined ligands that bind to the ligand-binding domain of nuclear receptors, whether they are endogenous or synthetic, either activate receptor activity (agonists) or block activation (antagonists) and due to the ability to alter activity of the receptors are often termed receptor “modulators.” The complex pharmacology of nuclear receptors has provided a class of ligands distinct from these simple modulators where ligands display agonist/partial agonist/antagonist function in a tissue or gene selective manner. This class of ligands is defined as selective modulators. Here, we review the development and pharmacology of a range of selective nuclear receptor modulators.

Concepts: Cholesterol, Protein, Pharmacology, Signal transduction, Receptor, Transcription factor, Steroid, Nuclear receptor


The membrane heme protein cytochrome b5 (b5) can enhance, inhibit, or have no effect on cytochrome P450 (P450) catalysis, depending on the specific P450, substrate, and reaction conditions, but the structural basis remains unclear. Herein the interactions between the soluble domain of microsomal b5 and the catalytic domain of the bi-functional steroidogenic cytochrome P450 17A1 (CYP17A1) were investigated. CYP17A1 performs both steroid hydroxylation, which is unaffected by b5, and an androgen-forming lyase reaction which is facilitated 10-fold by b5. NMR chemical shift mapping of b5 titrations with CYP17A1 indicate that the interaction occurs in an intermediate exchange regime and identifies charged surface residues involved in the protein/protein interface. The role of these residues is confirmed by disruption of the complex upon mutagenesis of either the anionic b5 residues (E48 or E49) or the corresponding cationic CYP17A1 residues (R347, R358, or R449). Cytochrome b5 binding to CYP17A1 is also mutually exclusive with binding of NADPH-cytochrome P450 reductase (CPR). To probe the differential effects of b5 on the two CYP17A1-mediated reactions and thus communication between the superficial b5 binding site and the buried CYP17A1 active site, CYP17A1/b5 complex formation was characterized with either hydroxylase or lyase substrates bound to CYP17A1. Significantly, the CYP17A1/b5 interaction is stronger when the hydroxylase substrate pregnenolone is present in the CYP17A1 active site than when the lyase substrate 17α-hydroxypregnenolone is in the active site. These findings form the basis for a clearer understanding of this important interaction by directly measuring the reversible binding of the two proteins, providing evidence of communication between the CYP17A1 active site and the superficial proximal b5 binding site.

Concepts: Metabolism, Enzyme, Catalysis, Cytochrome P450, Enzyme inhibitor, Steroid, Enzyme catalysis, CYP17A1


Cholesterol has been suggested to play a role in stable vesicle formation by adjusting the molecular packing of the vesicular bilayer. To explore the mechanisms involved in adjusting the bilayer structure by cholesterol, the molecular packing behavior in a mimic outer layer of cationic dialkyldimethylammonium bromide (DXDAB)/cholesterol vesicular bilayer was investigated by the Langmuir monolayer approach with infrared reflection-absorption spectroscopy (IRRAS). The results indicated that the addition of cholesterol in the DXDAB Langmuir monolayers not only restrained the desorption of the DXDAB with short hydrocarbon chains, such as ditetradecyldimethylammonium bromide or dihexadecyldimethylammonium bromide, into the aqueous phase but also induced a condensing effect on the DXDAB monolayers. At a liquid-expanded (LE) state, the ordering effect of cholesterol accompanying the condensing effect occurred in the mixed DXDAB/cholesterol monolayers due to the tendency of maximizing hydrocarbon chain contact between cholesterol and the neighboring hydrocarbon chains. However, for the mixed monolayers containing the DXDAB with long hydrocarbon chains, such as dioctadecyldimethylammonium bromide (DODAB), the disordering effect of cholesterol took place at a liquid-condensed (LC) state. This was related to the molecular structure of cholesterol and hydrocarbon chain length of DODAB. The rigid sterol ring of cholesterol hindered the portion of neighboring hydrocarbon chains from motion. However, the flexible alkyl side-chain of cholesterol along with the corresponding portion of neighboring hydrocarbon chains formed a fluidic region, counteracting the enhanced conformational order induced by the sterol ring of cholesterol. Furthermore, the long hydrocarbon chains of DODAB possessed a more pronounced motion freedom, resulting in a more disordered packing of the monolayers.

Concepts: Hydrocarbon, Physical chemistry, Steroid, Molecular geometry, Lipid bilayer, Infrared spectroscopy, Monolayer, Langmuir


Twenty-four-month-old male C57BL/6 mice with low serum testosterone levels were used as a late-onset hypogonadism (LOH) animal model for examining the effects of velvet antler polypeptide (VAP) on sexual function and testosterone synthesis. These mice received VAP for 5 consecutive weeks by daily gavage at doses of 100, 200, or 300 mg kg-1 body weight per day (n = 10 mice per dose). Control animals (n = 10) received the same weight-based volume of vehicle. Sexual behavior and testosterone levels in serum and interstitial tissue of testis were measured after the last administration of VAP. Furthermore, to investigate the mechanisms of how VAP affects sexual behavior and testosterone synthesis in vivo, the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase (3β-HSD) in Leydig cells was also measured by immunofluorescence staining and quantitative real-time PCR. As a result, VAP produced a significant improvement in the sexual function of these aging male mice. Serum testosterone level and intratesticular testosterone (ITT) concentration also increased in the VAP-treated groups. The expression of StAR, P450scc, and 3β-HSD was also found to be enhanced in the VAP-treated groups compared with the control group. Our results suggested that VAP was effective in improving sexual function in aging male mice. The effect of velvet antler on sexual function was due to the increased expression of several rate-limiting enzymes of testosterone synthesis (StAR, P450scc, and 3β-HSD) and the following promotion of testosterone synthesis in vivo.

Concepts: Polymerase chain reaction, Enzyme, Testosterone, Cytochrome P450, Steroid, Puberty, Cholesterol side-chain cleavage enzyme, Steroidogenic acute regulatory protein


The recent discovery of bile acid (BA) receptors and a better delineation of the multiple roles of BAs in relevant biological processes have revamped BA research. The vasoactive actions of BAs were recognized more than three decades ago but the underlying mechanisms of the BA-induced vasorelaxation are now being clarified. Recent evidence shows that the BA receptors FXR and TGR5 are expressed in endothelial cells and may have important effects on both systemic and portal circulation. The availability of genetically engineered mice with ablation of BA receptors and the development of BA receptor agonists has allowed to explore the modulation of XR and, in a lesser extent, of TGR5 in the setting of portal hypertension (PHT) with promising results. In this review, we summarize recent data on how BA-dependent pathways influence several processes that impact in PHT and the preclinical data showing that pharmacological modulation of those pathways may hold promise in the treatment of PHT.

Concepts: DNA, Protein, Receptor antagonist, Cardiovascular system, Serotonin, Steroid, Inverse agonist, Vasoconstriction