SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Starch gelatinization

28

Corn-broad bean spaghetti type pasta was made with a corn/broad bean flour blend in a 70:30 ratio, through an extrusion-cooking process (Brabender 10 DN single-screw extruder with a 3:1 compression ratio). The effect of temperature (T=80, 90 and 100°C) and moisture (M=28%, 31% and 34%) on the extrusion responses (specific consumption of mechanical energy and pressure) and the quality of this pasta-like product (expansion, cooking-related losses, water absorption, firmness and stickiness) was assessed. The structural changes of starch were studied by means of DSC and XRD. The extrusion-cooking process, at M=28% and T=100°C, is appropriate to obtain corn-broad bean spaghetti-type pasta with high protein and dietary fibre content and adequate quality. The cooking characteristics and resistance to overcooking depended on the degree of gelatinisation and formation of amylose-lipid complexes. The critical gelatinisation point was 46.55%; beyond that point, the quality of the product declines.

Concepts: Protein, Nutrition, Maize, Pasta, Flour, Vicia faba, Vicia, Starch gelatinization

28

Blends based on plasticized-wheat starch (as matrix or rich phase) and poly(ethylene oxide) (PEO) (as dispersed phase) were prepared by melt processing in a twin-screw extruder. The extrusion of the plasticized-starch is significantly facilitated by blending with PEO. Plasticized-starch and PEO are immiscible in the range of the investigated blend ratios (90/10-50/50). The phase inversion takes place when the PEO content is 50 wt.% in the blend. Both the thermal stability and the tensile properties of plasticized-starch are improved by blending with PEO. Also, a synergistic effect between plasticized-starch and PEO is noticed at 25-40 wt.% PEO content in the blend, the Young’s modulus of the materials obtained being the highest and higher than both neat polymer components at those blending ratios.

Concepts: Aluminium, Young's modulus, Starch gelatinization

27

Enhancement of product properties of extruded starch based products can be achieved by incorporating health promoting oil into the matrix. In order to achieve a preferably high expansion with a homogeneous pore structure, the expansion mechanisms have to be understood. In our study, we applied a customized twin-screw extruder set up to feed medium-chain triglycerides after complete gelatinization of corn starch, minimizing its effect on the starch gelatinization. Despite the fact, that the addition of up to 3.5% oil showed no influence on the extrusion parameters, we observed a three-fold increase in sectional expansion. Longitudinal expansion was less affected by the oil content. Rheological properties of the gelatinized starch were measured using an inline slit die rheometer. In addition to shear viscosity, we presented a method to determine the Bagley pressure, which reflects the elongational properties of a fluid. We were able to observe an increase in the Bagley pressure from about 25bar up to 35-37bar due to the addition of oil.

Concepts: Starch, Fluid mechanics, Viscosity, Liquid, Shear stress, Rheology, Extrusion, Starch gelatinization

27

PURPOSE: In the present study we evaluated a novel processing technique for the continuous production of hotmelt extruded controlled release matrix systems. A cutting technique derived from plastics industry, where it is widely used for cutting of cables and wires was adapted into the production line. Extruded strands were shaped by a rotary-fly cutter. Special focus is laid on the development of a process analytical technology by evaluating signals obtained from the servo control of the rotary fly cutter. The intention is to provide a better insight into the production process and to offer the ability to detect small variations in process-variables. MATERIALS AND METHODS: A co-rotating twin-screw extruder ZSE 27 HP-PH from Leistritz (Nürnberg, Germany) was used to plasticize the starch; critical extrusion parameters were recorded. Still elastic strands were shaped by a rotary fly-cutter type Dynamat 20 from Metzner (Neu-Ulm, Germany). Properties of the final products were analyzed via digital image analysis to point out critical parameters influencing the quality. Important aspects were uniformity of diameter, height, roundness, weight and variations in the cutting angle. Stability of the products was measured by friability tests and by determining the crushing strength of the final products. Drug loading studies up to 70% were performed to evaluate the capacity of the matrix and to prove the technological feasibility. Changes in viscosities during API addition were analyzed by a Haake Minilab capillary rheometer. X-ray studies were performed to investigate molecular structures of the matrices. RESULTS: External shapes of the products were highly affected by die-swelling of the melt. Reliable reproducibility concerning uniformity of mass could be achieved even for high production rates (>2500 cuts/min). Both mechanical strength and die swelling of the products could be linked to the ratio of amylose to amylopectin. Formulations containing up to 70% of API could still be processed. Viscosity measurements revealed the plasticizing effect caused by API addition. Dissolution data proved the suitability of extruded starch matrices as a sustained release dosage form. Monitoring of consumed energies during the cutting process could be linked to changes in viscosity. The established PAT system enables the detection of small variations in material properties and can be an important tool to further improve process stability.

Concepts: Viscosity, Strength of materials, Compressive strength, Work hardening, Industry, Extrusion, Rheometer, Starch gelatinization

0

Soya bean protein concentrate (SPC) with two particle sizes were evaluated on extrusion parameters, kibble formation, digestibility and palatability of dog foods. Eight diets were extruded: PBM-control diet based on poultry by-product meal (PBM); GM-a diet in which corn gluten meal (GM) replaced 45% of the diet protein; cSPC15%, cSPC30% and cSPC45%-diets in which SPC of coarse particle size (600 μm) replaced 15%, 30% and 45% of the diet protein; and sSPC15%, sSPC30% and sSPC45%-diets in which SPC of small particle size (200 μm) replaced 15%, 30% and 45% of the diet protein. The digestibility of nutrients was evaluated for the PBM, GM, cSPC45% and sSPC45% diets, using six dogs per food. The PBM, GM and cSPC45% diets were compared for palatability. Data were submitted for analysis of variance, and the means were compared by polynomial contrasts or Tukey’s test (p < .05). The cSPC increased the specific mechanical energy (SME) application, extrusion temperature and pressure linearly, resulting in lower kibble density and higher expansion and starch gelatinization (SG) (p < .01). When comparing the PBM, GM, cSPC45% and sSPC45% diets, higher SME, extrusion temperature and pressure, SG and kibble expansion were verified for the cSPC45% diet (p < .05). The DM, fat and crude protein digestibility were similar among diets. Faecal pH, ammonia and lactate did not differ, demonstrating that the removal of oligosaccharides and soluble non-starch polysaccharides of SPC produces an ingredient with mostly non-fermentable fibre. Dogs preferred the PBM to the GM diet (p < .05), but consumed the PBM and cSPC45% foods equally. In conclusion, SPC exhibited good extrusion functionality, favouring kibble expansion and SG, with high digestibility, similar to that of PBM. The removal of soluble compounds from soya beans resulted in an ingredient with low fermentable fibre content, which did not alter faecal formation or characteristics.

Concepts: Protein, Nutrition, Soybean, Analysis of variance, Soy milk, Soy protein, Extrusion, Starch gelatinization

0

Potato and pea starches were processed on a twin-screw extruder under various moisture and thermomechanical conditions, chosen to keep material temperature Teclose to starch melting temperature, Tm, whilst avoiding die expansion. Extruded rods were analysed by asymmetrical flow field flow fractionation coupled with light scattering, X-ray diffraction, DSC, and light microscopy with image analysis. Molar mass of extruded materials decreased more for potato than for pea starch, when specific mechanical energy SME increased, likely because of larger amylopectin sensitivity to shear. No crystallinity was detected when ΔT = (Tm-Te) ≤ 0. Residual gelatinization enthalpy ΔHgdecreased with ΔT. As illustrated by larger ΔT values for ΔHg = 0, decreasing moisture favored melting, likely by increasing solid friction. The fraction of granular remnants of potato starch was inversely correlated to SME. These results could be explained by considering starch melting during extrusion as a suspension of solid particles embedded in a continuous amorphous matrix.

Concepts: Energy, Fundamental physics concepts, Starch, Solid, Potato, Potato starch, Waxy potato starch, Starch gelatinization

0

Starch is an attractive raw material as ingredient for edible film manufacture because of its low cost, abundant availability, renewability, and biodegradability. Nevertheless, starch based films exhibit several disadvantages such as brittleness and poor mechanical and barrier properties, which restrict its application for food packaging. The use of the extrusion technology as a pretreatment of the casting technique to change the starch structure in order to obtain edible films, may constitute an alternative to generate coatings with good functional properties and maintain longer the postharvest quality and shelf life of fruits. For this reason, the objective of this study was to optimize the conditions of an extrusion process to obtain a formulation of modified starch to elaborate edible films with good functional properties using the casting technique and assess the effect during the storage when applied on a model fruit. The best conditions of the extrusion process and concentration of plasticizers were obtained using response surface methodology. From optimization study, it was found that appropriate conditions to obtain starch edible films with the best mechanical and barrier properties were an extrusion temperature of 100 °C and a screw speed of 120 rpm, while the glycerol content was 16.73%. Also, once applied in fruit, the loss of quality attributes was diminished.

Concepts: Quality, Quality control, Starch, Maize, Mango, Amylomaize, Waxy corn, Starch gelatinization

0

The starch and starch gels from green gram (GG) and foxtail millet (FM) were characterised for their physicochemical, thermal and microstructural characteristics; the features of shape and size were determined by image analysis. Both GG and FM formed well-set gels at 9% concentration of starch. The fracture strain of the gels was between 78 and 80% indicating non-brittle gels. The peak temperatures of the native flour of GG (74.9 °C) and FM (75.7 °C) were significantly higher than their corresponding starch samples (72.2 and 75.0 °C). The conclusion temperatures of the FM native flour (81.2 °C) and starch (79.4 °C) samples were higher than the native GG flour (79.9 °C) and GG starch (77.1 °C) samples. Starches were nearly spherical as the roundness values were between 0.88 and 0.95. Green gram starch was pentagonal having an average diameter of 3.9-9.2 µm while foxtail millet starch was spherical with a diameter of 4.9-10.1 µm. The freeze-dried GG and FM starch gels showed cellular structure containing organised hexagonal pores, bound by thin pore walls; the GG starch gels deviated from the circular shape as they had the highest elongation value of 4.21. The thicker pore walls were observed for GG starch gels (0.88 μm) compared to that of FM samples (0.57 μm). The higher pore wall thickness in the case of GG gel showed the formation of junction zones.

Concepts: Wheat, Starch, Maize, The Higher, Flour, Starch gelatinization

0

Problems with rehydration and palatability are considered as unacceptable quality characteristics for the noodles produced using high-strength extrusion technique. Thus, the aim of this study was to solve these problems by designing a novel method to create a porous structure for the high-strength extruded noodles (HENs). The quality indices of HENs were significantly improved after adding to them thermostable α-amylase (TαA) at 0.05% to 0.10%. The microstructure graphs showed that a well-developed porous structures was successfully created throughout noodle strands. This indicated that the TαA has effectively worked on starch granules in spite of the high-strength performance of the extrusion process. MALLS-GFC, X-ray diffraction, and differential scanning calorimeter investigations showed that the appearance of a porous structure was mainly attributed to the internal collapse of α-1,4-glycosidic bonds and the dissolution of water-soluble degradation products, such as dextrin and oligosaccharides. Moreover, the slight inhibited effect of excess TαA on the starch gelatinization was because of the fact that the high enzyme concentration might cause TαA to adhere or overlay on it.

Concepts: Nutrition, Addition, Starch, Differential scanning calorimetry, Extrusion, Starch gelatinization, Modified starch, Dextrin

0

Dextrinization of starch using extrusion processing is crucial to the quality of direct expanded products. To determine the extent of dextrinization, flour samples were extracted from a twin-screw extruder that had been brought to a sudden stop and molecular weights were determined by intrinsic viscosity. The screw profile and moisture feed content had the most significant impact on molecular weight reduction, reducing intrinsic viscosity from 1.75 to 0.70dL/g at the most. The breakdown, as shown by a reduction in intrinsic viscosity, had a strong negative correlation (r=-0.96) with specific mechanical energy. However, the extruder die did not have a measurable impact on the molecular weight reduction of waxy flour. Size exclusion chromatography confirmed intrinsic viscosity measurements were associated with reduction of the size of amylopectin molecules to approximately 1/10 the original molecular weight while native gliadin was nearly eliminated from the waxy flour following the extrusion treatments.

Concepts: Molecule, Mass, Aluminium, Weight, Size exclusion chromatography, Molecular mass, Extrusion, Starch gelatinization