SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Standing wave

152

This paper focuses on several aspects extending the dynamical efficiency of a cantilever beam vibrating in the third mode. A few ways of producing this mode stimulation, namely vibro-impact or forced excitation, as well as its application for energy harvesting devices are proposed. The paper presents numerical and experimental analyses of novel structural dynamics effects along with an optimal configuration of the cantilever beam. The peculiarities of a cantilever beam vibrating in the third mode are related to the significant increase of the level of deformations capable of extracting significant additional amounts of energy compared to the conventional harvester vibrating in the first mode. Two types of a piezoelectric vibrating energy harvester (PVEH) prototype are analysed in this paper: the first one without electrode segmentation, while the second is segmented using electrode segmentation at the strain nodes of the third vibration mode to achieve effective operation at the third resonant frequency. The results of this research revealed that the voltage generated by any segment of the segmented PVEH prototype excited at the third resonant frequency demonstrated a 3.4-4.8-fold increase in comparison with the non-segmented prototype. Simultaneously, the efficiency of the energy harvester prototype also increased at lower resonant frequencies from 16% to 90%. The insights presented in the paper may serve for the development and fabrication of advanced piezoelectric energy harvesters which would be able to generate a considerably increased amount of electrical energy independently of the frequency of kinematical excitation.

Concepts: Wave, Frequency, Classical mechanics, Resonance, Vibration, Harmonic oscillator, Standing wave, Energy harvesting

56

The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

Concepts: DNA, Gene, Organism, Cell biology, Wave, Phase, Standing wave, Cell theory

28

Arrays of on-chip spherical glass shells of hundreds of micrometers in diameter with ultra-smooth surfaces and sub-micrometer wall thicknesses have been fabricated and have been shown to sustain optical resonance modes with high Q-factors of greater than 50 million. The resonators exhibit temperature sensitivity of -1.8 GHz K(-1) and can be configured as ultra-high sensitivity thermal sensors for a broad range of applications. By virtue of the geometry’s strong light-matter interaction, the inner surface provides an excellent on-chip sensing platform that truly opens up the possibility for reproducible, chip scale, ultra-high sensitivity microfluidic sensor arrays. As a proof of concept we demonstrate the sensitivity of the resonance frequency as water is filled inside the microspherical shell and is allowed to evaporate. By COMSOL modeling, the dependence of this interaction on glass shell thickness is elucidated and the experimentally measured sensitivities for two different shell thicknesses are explained.

Concepts: Resonator, Feedback, Sound, Resonance, Differential geometry, Acoustic resonance, Standing wave, Mechanical resonance

28

The free vibrations of a two-layered C-axis inclined zig-zag ZnO thin-film bulk acoustic wave resonator (FBAR) connected to external impedance are analyzed. The frequency equation and mode shape for this resonator are derived based on the linear piezoelectric theory. The impedance characteristics of the FBAR are derived and compared with previous experimental results.

Concepts: Wave, Acoustics, Titanium dioxide, Zinc oxide, Resonance, Vibration, Mode shape, Standing wave

28

The electronic excitations of three noble-metall chains-copper, silver, and gold-have been investigated at the time-dependent density functional theory level. The reduced single-electron density matrix is propagated according to the Liouville-von Neumann equation in the real-time domain after an impulse excitation. The propagation in the real-time domain enables us to investigate the formation and size evolution of electronic excitations in these metallic chains with different number of atoms, up to a total of 26 atoms. The longitudinal oscillations at lower excitation energies are dominated by s → p transitions in these chains and have collective or central resonances, while the first peak involving d → p transitions in the longitudinal mode appears at a higher excitation energy and shows collective resonances. In the transverse oscillations, there are in most cases d → p transitions in each resonance, which can be attributed to either central or end resonances. Convergence of the oscillations, in particular those involving the collective and central resonances in the three noble-metal chains can only be observed for chains with 18 atoms or more. Different spectroscopic characteristics among these three metallic chains can be attributed to their different electronic structures, in particular the relativistic effects in the gold chains have a dramatic effect on their electronic structures and excitations.

Concepts: Quantum mechanics, Resonator, Kinetic energy, Uranium, Density functional theory, Normal mode, Standing wave, Optical cavity

27

Spike-timing-dependent plasticity (STDP) is an important synaptic dynamics that is capable of shaping the complex spatiotemporal activity of neural circuits. In this study, we examine the effects of STDP on the spatiotemporal patterns of a spatially extended, two-dimensional spiking neural circuit. We show that STDP can promote the formation of multiple, localized spiking wave patterns or multiple spike timing sequences in a broad parameter space of the neural circuit. Furthermore, we illustrate that the formation of these dynamic patterns is due to the interaction between the dynamics of ongoing patterns in the neural circuit and STDP. This interaction is analyzed by developing a simple model able to capture its essential dynamics, which give rise to symmetry breaking. This occurs in a fundamentally self-organizing manner, without fine-tuning of the system parameters. Moreover, we find that STDP provides a synaptic mechanism to learn the paths taken by spiking waves and modulate the dynamics of their interactions, enabling them to be regulated. This regulation mechanism has error-correcting properties. Our results therefore highlight the important roles played by STDP in facilitating the formation and regulation of spiking wave patterns that may have crucial functional roles in brain information processing.

Concepts: Emergence, Spike-timing-dependent plasticity, Wave, Regulation, Dynamics, C, Parameter, Standing wave

27

Proton-decoupled, (13) C nuclear MRS experiments require a RF coil that operates at the Larmor frequencies of both (13) C and (1) H. In this work, we designed, built and tested a single-unit, dual-tuned coil based on a half-birdcage open coil design. It was constructed as a low-pass network with a resonant trap in series with each leg. Traps are tuned in alternate legs such that the two resonant modes arise from currents on alternate legs. The coil performance was compared with that of a dual-tuned coil consisting of two proton surface coils operating in quadrature and a single surface coil for (13) C transmission and reception. The half-birdcage coil was shown to produce a more homogeneous RF field at each frequency and was more sensitive to a (13) C signal arising from regions further from the coil surface. The applicability of the coil in vivo was demonstrated by acquiring a proton decoupled, natural abundance (13) C glycogen signal from the calf of a normal volunteer. Copyright © 2013 John Wiley & Sons, Ltd.

Concepts: Frequency, Wavelength, John Wiley & Sons, Trap, Resonance, Radio, Coil, Standing wave

27

High-index dielectric or semiconductor nanoparticles support strong Mie-like geometrical resonances in the visible spectral range. We use 30 keV angle-resolved cathodoluminescence imaging spectroscopy to excite and detect these resonant modes in single silicon nanocylinders with diameters ranging from 60 - 350 nm. Resonances are observed with wavelengths in the range 400 - 700 nm, with quality factors in the range Q = 9 - 77, and show a strong redshift with increasing cylinder diameter. The photonic wavefunction of all modes is determined at deep-subwavelength resolution and shows good correspondence with numerical simulations. An analytical model is developed that describes the resonant Mie-like optical eigenmodes in the silicon cylinders using an effective index of a slab waveguide mode. It shows good overall agreement with the experimental results and enables qualification of all resonances with azimuthal (m = 0 - 4) and radial (q = 1 - 4) quantum numbers. The single resonant Si nanocylinders show characteristic angular radiation distributions in agreement with the modal symmetry.

Concepts: Electron, Quantum mechanics, Optics, Fundamental physics concepts, Semiconductor, Silicon, Harmonic oscillator, Standing wave

27

The acoustic transmission coefficient of a resonant sonic crystal made of hollow bamboo rods is studied experimentally and theoretically. The plane wave expansion and multiple scattering theory (MST) are used to predict the bandgap in transmission coefficient of a non-resonant sonic crystal composed of rods without holes. The predicted results are validated against experimental data for the acoustic transmission coefficient. It is shown that a sonic crystal made from a natural material with some irregularities can exhibit a clear transmission bandgap. Then, the hollow bamboo rods are drilled between each node to create an array of Helmholtz resonators. It is shown that the presence of Helmholtz resonators leads to an additional bandgap in the low-frequency part of the transmission coefficient. The MST is modified in order to account for the resonance effect of the holes in the drilled bamboo rods. This resonant multiple scattering theory is validated experimentally and could be further used for the description and optimization of more complex resonant sonic crystals.

Concepts: Chemistry, Resonator, Scattering, Acoustics, Sound, Resonance, Acoustic resonance, Standing wave

26

We report on a noncontact photoacoustic imaging system utilizing an all-fiber-optic heterodyne interferometer as an acoustic wave detector. The acoustic wave generated by a short laser pulse via the photoacoustic effect and arriving at the sample surface could be detected with the fiber-optic heterodyne interferometer without physical contact or using an impedance matching medium. A phantom experiment was conducted to evaluate the proposed system, and the initial acoustic pressure distribution was calculated using a Fourier-based reconstruction algorithm. It is expected that the all-fiber-optic configuration of the proposed system can be applied as a minimally invasive diagnostic tool.

Concepts: Laser, Medical imaging, Minimally invasive, Acoustics, Pressure, Standing wave, Transmission line, Optical imaging