Discover the most talked about and latest scientific content & concepts.

Concept: Stachybotrys


Over the past 20 years, exposure to mycotoxin producing mold has been recognized as a significant health risk. Scientific literature has demonstrated mycotoxins as possible causes of human disease in water-damaged buildings (WDB). This study was conducted to determine if selected mycotoxins could be identified in human urine from patients suffering from chronic fatigue syndrome (CFS). Patients (n = 112) with a prior diagnosis of CFS were evaluated for mold exposure and the presence of mycotoxins in their urine. Urine was tested for aflatoxins (AT), ochratoxin A (OTA) and macrocyclic trichothecenes (MT) using Enzyme Linked Immunosorbent Assays (ELISA). Urine specimens from 104 of 112 patients (93%) were positive for at least one mycotoxin (one in the equivocal range). Almost 30% of the cases had more than one mycotoxin present. OTA was the most prevalent mycotoxin detected (83%) with MT as the next most common (44%). Exposure histories indicated current and/or past exposure to WDB in over 90% of cases. Environmental testing was performed in the WDB from a subset of these patients. This testing revealed the presence of potentially mycotoxin producing mold species and mycotoxins in the environment of the WDB. Prior testing in a healthy control population with no history of exposure to a WDB or moldy environment (n = 55) by the same laboratory, utilizing the same methods, revealed no positive cases at the limits of detection.

Concepts: Aflatoxin, Mycotoxin, Aspergillus, Chronic fatigue syndrome, Ochratoxin, Mycotoxins, Stachybotrys, Mold


Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars - for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or trichothecene concentration in naturally infected grain matrices.

Concepts: Fusarium, Wheat, Data analysis, Cereal, Plant pathogens and diseases, Mycotoxins, Stachybotrys, Trichothecene


Mycotoxins are highly diverse secondary metabolites produced in nature by a wide variety of fungus which causes food contamination, resulting in mycotoxicosis in animals and humans. In particular, trichothecenes mycotoxin produced by genus fusarium is agriculturally more important worldwide due to the potential health hazards they pose. It is mainly metabolized and eliminated after ingestion, yielding more than 20 metabolites with the hydroxy trichothecenes-2 toxin being the major metabolite. Trichothecene is hazardously intoxicating due to their additional potential to be topically absorbed, and their metabolites affect the gastrointestinal tract, skin, kidney, liver, and immune and hematopoietic progenitor cellular systems. Sensitivity to this type of toxin varying from dairy cattle to pigs, with the most sensitive endpoints being neural, reproductive, immunological and hematological effects. The mechanism of action mainly consists of the inhibition of protein synthesis and oxidative damage to cells followed by the disruption of nucleic acid synthesis and ensuing apoptosis. In this review, the possible hazards, historical significance, toxicokinetics, and the genotoxic and cytotoxic effects along with regulatory guidelines and recommendations pertaining to the trichothecene mycotoxin are discussed. Furthermore, various techniques utilized for toxin determination, pathophysiology, prophylaxis and treatment using herbal antioxidant compounds and regulatory guidelines and recommendations are reviewed. The prospects of the trichothecene as potential hazardous agents, decontamination strategies and future perspectives along with plausible therapeutic uses are comprehensively described.

Concepts: Protein, Metabolism, Fungus, Fusarium, Toxicology, Digestion, Mycotoxins, Stachybotrys


Many fungi can develop on building material in indoor environments if moisture is high enough. Among species that are frequently observed, some are known to be potent mycotoxin producers. This presence of toxinogenic fungi in indoor environments raises the question of the possible exposure of occupants to these toxic compounds by inhalation after aerosolization.This study investigated the mycotoxin production by Penicillium brevicompactum, Aspergillus versicolor and Stachybotrys chartarum during their growth on wallpaper and the possible subsequent aerosolization of produced mycotoxins from contaminated substrates.We demonstrated that mycophenolic acid, sterigmatocystin and macrocyclic trichothecenes (sum of 4 major compounds) could be produced at levels of 1.8, 112.1 and 27.8 mg/m(2), respectively on wallpaper. Moreover, part of the produced toxins could be aerosolized from substrate. The propensity to aerosolization differed according to the fungal species. Thus, particles were aerosolized from wallpaper contaminated with P. brevicompactum when air velocity of just 0.3 m/s was applied, where S. chartarum required air velocity of 5.9 m/s. A versicolor was intermediate since aerosolization occurred under air velocity of 2 m/s.Quantification of the toxic content revealed that toxic load was mostly associated with particles of size equal or higher of 3 μm, which may correspond to spores. However, some macrocyclic trichothecenes (especially satratoxin H and verrucarin J) can also be found on smaller particles that can penetrate deeply in the respiratory tract upon inhalation. These elements are important for risk assessment related to mouldy environments.IMPORTANCE The possible colonisation of building material by toxinogenic fungi in case of moistening raises the question of the subsequent exposure of occupants to aerosolized mycotoxins. In this study, we demonstrated that three different toxinogenic species produce mycotoxins during their development on wallpaper. These toxins can subsequently be aerosolized, at least partly, from mouldy material. This transfer to air requires air velocities that can be encountered in « real life conditions » in buildings. The most part of the aerosolized toxic load is found in particles whose size corresponds to spores or mycelium fragments. However, some toxins were also found on particles smaller than spores that are easily respirable and can deeply penetrate into human respiratory tract. All these data are important for risk assessment related to fungal contamination of indoor environments.

Concepts: Fungus, Mycotoxin, Respiratory system, Aspergillus, Penicillium, Mushroom, Stachybotrys, Mold


It has recently been demonstrated that patients who develop chronic illness after prior exposure to water damaged buildings (WDB) and mold have the presence of mycotoxins, which can be detected in the urine. We hypothesized that the mold may be harbored internally and continue to release and/or produce mycotoxins which contribute to ongoing chronic illness. The sinuses are the most likely candidate as a site for the internal mold and mycotoxin production. In this paper, we review the literature supporting this concept.

Concepts: Medicine, Medical terms, Fungus, Mycotoxin, Aspergillus, Stachybotrys, Mold


Gypsum wallboard is a popular building material, but is also very frequently overgrown by Stachybotrys chartarum after severe and/or undetected water damage. The purpose of this study was to determine if Stachybotrys and other fungi frequently isolated from wet gypsum wallboard are already present in the panels directly from the factory. Surface disinfected gypsum discs were wetted with sterile water, sealed and incubated for 70 days. The results showed that Neosartorya hiratsukae (≡ Aspergillus hiratsukae) was the most dominant fungus on the gypsum wallboard followed by Chaetomium globosum and Stachybotrys chartarum. Our results suggest that these three fungal species are already embedded in the materials, presumably in the paper/carton layer surrounding the gypsum core, before the panels reach the retailers/building site. This article is protected by copyright. All rights reserved.

Concepts: Eukaryote, Plant, Fungus, Mycotoxin, All rights reserved, Copyright, Stachybotrys, Mold


In the indoor environment people are exposed to several fungal species. Evident dampness is associated with increased respiratory symptoms. To examine immune responses associated with fungal exposure mice are often exposed to one species grown on an agar medium. The aim of this study was to develop an inhalation exposure system to be able to examine responses in mice to exposure to mixed fungal species aerosolised from fungal-infested building materials. Indoor airborne fungi were sampled and cultivated on gypsum boards. Aerosols were characterised and compared with aerosols in homes.Aerosols containing 10(7)cfu of fungi/m(3) air were generated repeatedly from fungal-infested gypsum boards in a mouse exposure chamber. Aerosols contained: Aspergillus nidulans, A.niger, A.ustus, A.versicolor, Chaetomium globosum, Cladosporium herbarum, Penicillium brevicompactum, P.camemberti, P.chrysogenum, P.commune, P.glabrum, P.olsonii, P.rugulosum, Stachybotrys chartarum and Wallemia sebi. They were all among the most abundant airborne species identified in 28 homes. Nine species from gypsum boards and 11 species in the homes are associated with water damage. Most fungi were present as single spores, but chains and clusters of different species and fragments were also present. The variation in exposure level during the 60 min of aerosol generation was similar to the variation measured in homes.Through aerosolisation of fungi, from the indoor environment, cultured on gypsum boards, it was possible to generate realistic aerosols in terms of species composition, concentration, and particle sizes. The inhalation-exposure system can be used to study: responses to indoor fungi associated with water damage and the importance of fungal species composition.

Concepts: Algae, Evolution, Plant, Fungus, Mycotoxin, Ascomycota, Stachybotrys, Mold


Fusarium graminearum is the predominant causal species of Fusarium head blight in Europe and North America. Different chemotypes of the species exist, each producing a plethora of mycotoxins. Isolates of differing chemotypes produce nivalenol (NIV) and deoxynivalenol (DON), which differ in toxicity to mammals and plants. However, the effect of each mycotoxin on volatile emissions of plant hosts is not known. Host volatiles are interpreted by insect herbivores such as Sitobion avenae, the English grain aphid, during host selection. Previous work has shown that grain aphids are repelled by wheat infected with DON-producing F. graminearum, and this study seeks to determine the influence of pathogen mycotoxins to host volatile chemistry. Volatile collections from infected hosts and olfactometer bioassays with alate aphids were performed. Infections with isolates that produced DON and NIV were compared, as well as a trichothecene deficient transformant derived from the NIV-producing isolate. This work confirmed the repellent nature of infected hosts with DON accumulation. NIV accumulation produced volatiles that were attractive to aphids. Attraction did not occur when NIV was absent and was, therefore, a direct consequence of NIV production.

Concepts: Insect, Plant, Fusarium, Wheat, Plant pathogens and diseases, Volatile, Aphid, Stachybotrys


Contamination of agricultural commodities with multiple trichothecene mycotoxins, produced by toxigenic Fusarium species, is a food safety issue, which greatly affects grain production and marketing worldwide. Importantly, exposure to multiple trichothecenes may increase toxicity in animals due to their synergistic and/or additive effects. To address the problem this study aimed to achieve a novel biological trait capable of detoxifying various food and feed contaminating trichothecenes under aerobic and anaerobic conditions and wide range of temperatures.

Concepts: Organism, Microbiology, Species, Fusarium, Mycotoxins, Stachybotrys, Anaerobic exercise, Trichothecene


There are few studies on rhinitis and sick building syndrome (SBS) among students in tropical countries. We studied associations between levels of five fungal DNA sequences, two mycotoxins (sterigmatocystin and verrucarol) and cat allergen (Fel d 1) levels in schools and rhinitis and other weekly SBS symptoms in the students. Fungal DNA was measured by quantitative PCR and cat allergen by ELISA. Pupils (N = 462) from eight randomly selected schools in Johor Bahru, Malaysia participated (96%). Dust samples were collected by cotton swabs and Petri dishes exposed for one week. None of the schools had a mechanical ventilation system, but all classrooms had openable windows that were kept open during lectures and indoor CO2 levels were low (mean 492 ppm; range 380-690 ppm). Weekly nasal symptoms (rhinitis) (18.8%), ocular (11.6%), throat (11.1%), dermal symptoms, headache (20.6%) and tiredness (22.1%) were common. Total fungal DNA in swab samples was associated with rhinitis (p = 0.02), ocular symptoms (p = 0.009) and tiredness (p = 0.001). There were positive associations between Aspergillus versicolor DNA in Petri dish samples, ocular symptoms (p = 0.02) and tiredness (p = 0.001). The level of the mycotoxin verrucarol (produced by Stachybotrys chartarum) in swab samples was positively associated with tiredness (p = 0.04). Streptomyces DNA in swab samples (p = 0.03) and Petri dish samples (p = 0.03) were negatively associated with tiredness. In conclusion, total fungal contamination, measured as total fungal DNA) in the classrooms, Aspergillus versicolor and verrucarol can be risk factors for rhinitis and SBS symptoms among students in the tropical country Malaysia.

Concepts: Aflatoxin, Mycotoxin, Aspergillus, Malaysia, Stachybotrys, Mold, Johor Bahru, Mold health issues