Discover the most talked about and latest scientific content & concepts.

Concept: Spray drying


The aim of this study was to develop a spray dried submicrometer powder formulation suitable for the excipient enhanced growth (EEG) application. Combination particles were prepared using the Buchi Nano spray dryer B-90. A number of spray drying and formulation variables were investigated with the aims of producing dry powder formulations that were readily dispersed upon aerosolization and maximizing the fraction of submicrometer particles. Albuterol sulfate, mannitol, L-leucine, and poloxamer 188 were selected as a model drug, hygroscopic excipient, dispersibility enhancer and surfactant, respectively. Formulations were assessed by scanning electron microscopy and aerosol performance following aerosolization using an Aerolizer® dry powder inhaler (DPI). In vitro drug deposition was studied using a realistic mouth-throat (MT) model. Based on the in vitro aerosolization results, the best performing submicrometer powder formulation consisted of albuterol sulfate, mannitol, L-leucine and poloxamer 188 in a ratio of 30:48:20:2, containing 0.5% solids in a water:ethanol (80:20% v/v) solution which was spray dried at 70°C. The submicrometer particle fraction (FPF(1μm/ED)) of this final formulation was 28.3% with more than 80% of the capsule contents being emitted during aerosolization. This formulation also showed 4.1% MT deposition. The developed combination formulation delivered a powder aerosol developed for the EEG application with high dispersion efficiency and low MT deposition from a convenient DPI device platform.

Concepts: Electron, Drying, Dosage forms, Spray drying, Nano spray dryer


The present study was conducted to examine the feasibility of nimodipine loaded PLGA microparticles suspended in Tisseel(™) fibrin sealant as an in situ forming depot system. This device locally placed can be used for the treatment of vasospasm after a subarachnoid hemorrhage. Microparticles were prepared via spray drying by using the vibration mesh spray technology of Nano Spray Dryer B-90. Spherically shaped microparticles with different loadings and high encapsulation efficiencies of 93.3% to 97.8% were obtained. Depending on nimodipine loading (10% - 40%) the particle diameter ranged from 1.9 ± 1.2 μm to 2.4 ± 1.3μm. Thermal analyses using DSC revealed that Nimodipine is dissolved in the PLGA matrix. Also fluorescent dye loaded microparticles were encapsulated in Tisseel(™) to examine the homogeneity of particles. 3D-pictures of the in situ forming devices displayed uniform particle homogeneity in the sealant matrix. Drug release was examined by fluorescence spectrophotometry which demonstrated a drug release proportional to the square root of time. A prolonged drug release of 19.5 h was demonstrated under in vitro conditions. Overall, the Nimodipine in situ forming device could be a promising candidate for the local treatment of vasospasm after a subarachnoid hemorrhage.

Concepts: Scientific method, Subarachnoid hemorrhage, In vitro, In situ, Spray drying, Vasospasm, Spray nozzle, Nano spray dryer


Nanotechnology receives a widespread application in semiconductor, manufacturing, and biotechnology industries [1]. Its biggest societal impact in pharmaceutical application is related to its use in design of nanomedicine with the aim to improve medical efficacy via resolving the poor drug bioavailability status. Pharmaceutical nanoparticles can be described as solid colloidal particles with sizes below 1000 nm [1-6]. Examples of nanocarrier are liposome, cocheates, polymeric micelle, dendrimer, nanosuspension, nanoemulsion, nanosphere and nanotube [4, 7-10]. The nanoparticles can be used to deliver polypeptides, proteins, nucleic acids, genes and vaccines [3]. Active pharmaceutical ingredients can be adsorbed, encapsulated or covalently attached to the surface/into the matrix of nanoparticles [1, 11-14]. Owing to small physical size and large specific surface area, they can improve the dissolution of poorly water-soluble drugs, enhance transcytosis across epithelial and endothelial barriers, enable drug targeting, enhance bioavailability, reduce dose and associated toxicity [1, 6, 14, 15]. Nanoparticles can enhance drug stability and efficacy, and enable sustained delivery [16, 17]. They can avoid or encounter rapid clearance by phagocytes thereby leading to prolonged or reduced drug circulation in the body, as a function of particle size and surface characteristics [8, 18, 19]. The nanoparticles can penetrate cells and target organs such as liver, spleen, lung, spinal cord and lymph. Its drug targeting element is mainly exploited in the treatment of solid tumors, cardiovascular diseases, and immunological diseases [15, 20-22]. Nonetheless, manufacturing of nanomedicine can be complex and additional hurdles are expected in the development for clinical usage. Spray drying is commonly used in the pharmaceutical industry to convert a liquid phase into a dry, solid powder. Both microparticles and nanoparticles can be produced/processed by means of spray drying technology. A thorough review of patents with reference to the value of spray drying technology in nanoproduct development and commercialization has been provided by Beck et al. (2012) and Patel et al. (2014) in the late issues of Recent Patents on Drug Delivery and Formulation [23,24]. Principally, the nanoparticles are obtainable via three approaches: i) spray drying solutions to obtain nanoparticles, ii) spray drying emulsions/dispersions to obtain nanoparticles and iii) spray drying pre-formed nanoparticles. The main challenges encountered by the existing spray drying or the latest nanospray drying technology are low production throughput, long production duration, and limited flexibility in processing operation when two or more reactive substances are required to be co-sprayed in situ, use of protein drugs that are prone to be lost via adsorption onto the processing device with time, and need of complex decoration of nanoparticles to enable drug targeting are concerned. Inferring from these shortfalls, it indicates that there is still an ample room for nanospray drying technology development in order to meet the therapeutic and commercial demands of the nanomedicine.

Concepts: Pharmacology, Drug, Nanotechnology, Colloid, Pharmaceutical drug, Active ingredient, Spray drying, BET theory


Nanoenergetic formulations under flash heating: Periodate salt nanoparticles are synthesized by a facile aerosol spray drying process and demonstrate highly reactive properties as oxidizers in an aluminum-based nanoenergetic formulation. Direct evidence supports that gas phase oxygen release from the oxidizer decomposition is critical in the ignition and combustion of these formulations.

Concepts: Oxygen, Carbon dioxide, Nitrogen, Phase, Critical point, Nitric acid, Spray drying, Internal combustion engine


An amphiphilic chitosan salt, chitosan oleate (CS-OA), was previously proposed for the physical stabilization of lemongrass antimicrobial nanoemulsions (NE) through a mild spontaneous emulsification process. As both chitosan and oleic acid are described in the literature for their positive effects in wound healing, in the present study CS-OA has been proposed to encapsulate alpha tocopherol (αTph) in NEs aimed to skin wounds. A NE formulation was developed showing about 220 nm dimensions, 36% drug loading, and αTph concentration up to 1 mg/ml. Both CS-OA and αTph NE stimulated cell proliferation on keratinocytes and fibroblast cell cultures, and in ex vivo skin biopsies, suggesting the suitability of CS-OA and of the antioxidant agent for topical application in wound healing. αTph stability, was further improved with respect of encapsulation, by spray drying the NE into a powder (up to about 90% αTph residual after 3 months). The spray drying process was optimized, to improve powder yield and αTph recovery, by a design of experiments approach. The powder obtained was easily re-suspended to deliver the NE and resulted able to completely release αTph.

Concepts: Wound healing, Antioxidant, Cell culture, Wound, Drying, Oleic acid, Spray drying, Poppyseed oil


Formulation composition and processing conditions can be adjusted to enhance the structural integrity as well as the bioactivity of proteins in the spray drying process. In this study, lysozyme was chosen as a model pharmaceutical protein to study these aspects when spray drying from water-ethanol mixtures. The effect of formulation additives (trehalose, Tween 20 and phosphate-buffered saline) and processing conditions (inlet temperature and storage time of lysozyme in the feed solution before the spray drying process) on the protein bioactivity was investigated. The results showed that the bioactivities of spray dried lysozyme with these additives were about 5-10% higher than that without additives. The bioactivity of the spray dried lysozyme was found to increase with a decrease in the inlet temperature from 130°C to 80°C, with similar findings when shortening the storage time of the feed solutions prior to spray drying. Fourier Transform Infrared (FTIR) and Circular Dichroism (CD) results showed that the native structures of lysozyme were largely restored upon reconstitution of the spray dried powder in water after the spray drying process. This suggests that the bioactivity of lysozyme could be preserved adequately by optimization of both the formulation composition and process conditions even when spray drying from a water-ethanol mixture.

Concepts: Protein, Protein structure, Thermodynamics, Fourier transform, Drying, Fourier analysis, Circular dichroism, Spray drying


In recent years, there is a rising interest in the number of food products containing probiotic bacteria with favorable health benefit effects. However, the viability of probiotic bacteria is always questionable when they exposure to the harsh environment during processing, storage and gastrointestinal digestion. To overcome these problems, microencapsulation of cells is currently receiving considerable attention and has obtained valuable effects. According to the drying temperature, the commonly used technologies can be divided into two patterns: high temperature drying (spray drying, fluid bed drying) and low temperature drying (ultrasonic vacuum spray drying, spray chilling, electrospinning, supercritical technique, freeze drying, extrusion, emulsion, enzyme gelation and impinging aerosol technique). Furthermore, not only should the probiotic bacteria maintain high viability during processing, they also need to keep alive during storage and gastrointestinal digestion, where they additionally suffer from water, oxygen, heat as well as strong acid and bile conditions. This review focuses on demonstrating the effects of different microencapsulation techniques on the survival of bacteria during processing as well as protective approaches and mechanisms to the encapsulated probiotic bacteria during storage and gastrointestinal digestion that currently reported in the literature.

Concepts: Oxygen, Acid, Digestive system, Digestion, Food preservation, Freeze drying, Micro-encapsulation, Spray drying


Background Tablets and capsules are the most accepted and widely used solid dosage forms in the medical therapy. Flow property of the powders is playing a key role in the various pharmaceutical fields especially in the fomulation of tablets and capsules. The high hygroscopic crystalline structure of anhydrous Divalproex sodium (DVX) makes it to be appear as waxy white flakes with almost no powder flowability which cause serious problems during the tabletting and capsule filling procedures. Purpose The main objective of this study was to improve the flowability of DVX powder. Methods DVX was mixed with mannitol or lactos in different ratios, dissolved in water and differet binary mixtures of ethanol:water, and finally spray dried with different spray drying conditions. Particle size and powders morphology were assessed by Scanning Electron Microscopy (SEM). The poweder flowability was assessed by measurmet of Hausner ratio (HR), Carr’s index (CI) and angle of repose (AOR) indexes. Furthermore, the content uniformity of DVX in spray-dried powders was determined by using a validated HPLC technique. Results The results showed that spray drying technique improved DVX flowability by forming spherical particles with narrow size distribution AOR value of DVX was decrease from not flowable to 36.1° in spray dried solid dispersion indicating the improvmet of powder flowability from very poor to fair/good condition. Conclusion Findings suggest that the spray drying technique improves DVX flowability and may pave the way for improvement in the tabletting procedure of DVX.

Concepts: Better, Electron, Electron microscope, Improve, Solid, Scanning electron microscope, Dosage forms, Spray drying


A new precursor, tetrakis(2-methoxyethyl) orthosilicate (TMEOS) was used to fabricate microparticles for sustained release application, specifically for biopharmaceuticals, by spray drying. The advantages of TMEOS over the currently applied precursors are its water solubility and hydrolysis at moderate pH without the need of organic solvents or catalyzers. Thus a detrimental effect on biomolecular drug is avoided. By generating spray-dried silica particles encapsulating the high molecular weight model compound FITC-dextran 150 via the nano spray dryer Büchi-90, we demonstrated how formulation parameters affect and enable control of drug release properties. The implemented strategies to regulate release included incorporating different quantities of dextrans with varying molecular weight as well as adjusting the pH of the precursor solution to modify the internal microstructures. The addition of dextran significantly altered the released amount, while the release became faster with increasing dextran molecular weight. A sustained release over 35days could be achieved with addition of 60 kD dextran. The rate of FITC-Dextran 150 release from the dextran 60 containing particles decreased with higher precursor solution pH. In conclusion, the new precursor TMEOS presents a promising alternative sol-gel technology based carrier material for sustained release application of high molecular weight biopharmaceutical drugs.

Concepts: Oxygen, Solubility, Sol-gel, Pharmaceutical industry, Solvent, Spray drying, Spray nozzle, Nano spray dryer


The aims of this research were first, to evaluate the antibacterial potential of commercial thyme essential oil against V. alginolyticus and V. parahaemolyticys and second, using the spray drying technique to produce microcapsules. chemical compounds of thyme oil and microcapsules were identified and quantified being thymol the chemical component present at the highest concentration. Oil-in-water (O/W) emulsions were prepared and the microcapsules were obtained with a spray dryer using maltodextrin as wall material (ratio 1:4). Thyme oil and the microcapsules exhibited antimicrobial activity against V. parahaemolyticus and V. alginolyticus. The spray drying process did not affect the antimicrobial activity of thyme essentialoil.

Concepts: Chemical compound, Micro-encapsulation, Vibrio, Spray drying, Thyme