Discover the most talked about and latest scientific content & concepts.

Concept: Sprattus


Microplastic is considered a potential threat to marine life as it is ingested by a wide variety of species. Most studies on microplastic ingestion are short-term investigations and little is currently known about how this potential threat has developed over the last decades where global plastic production has increased exponentially. Here we present the first long-term study on microplastic in the marine environment, covering three decades from 1987 to 2015, based on a unique sample set originally collected and conserved for food web studies. We investigated the microplastic concentration in plankton samples and in digestive tracts of two economically and ecologically important planktivorous forage fish species, Atlantic herring (Clupea harengus) and European sprat (Sprattus sprattus), in the Baltic Sea, an ecosystem which is under high anthropogenic pressure and has undergone considerable changes over the past decades. Surprisingly, neither the concentration of microplastic in the plankton samples nor in the digestive tracts changed significantly over the investigated time period. Average microplastic concentration in the plankton samples was 0.21±0.15particlesm(-3). Of 814 fish examined, 20% contained plastic particles, of which 95% were characterized as microplastic (<5mm) and of these 93% were fibres. There were no significant differences in the plastic content between species, locations, or time of day the fish were caught. However, fish size and microplastic in the digestive tracts were positively correlated, and the fish contained more plastic during summer than during spring, which may be explained by increased food uptake with size and seasonal differences in feeding activity. This study highlights that even though microplastic has been present in the Baltic environment and the digestive tracts of fishes for decades, the levels have not changed in this period. This underscores the need for greater understanding of how plastic is cycled through marine ecosystems. The stability of plastic concentration and contamination over time observed here indicates that the type and level of microplastic pollution may be more closely correlated to specific human activities in a region than to global plastic production and utilization as such.

Concepts: Time, Fish, Atlantic Ocean, Baltic Sea, Ocean, Herring, Clupeidae, Sprattus


The analysis of material used in this study demonstrated that the amount of polycyclic aromatic hydrocarbons (PAHs) in smoked sprats varies from the level below the lowest detection limit in muscles up to 9.99 µg kg(-1) of benzo[a]pyrene (BaP) in fish skin. Such a high level of PAHs in skin was reported only in one of six batches of sprats, while mean BaP level was at 1.69 µg kg(-1). Regardless such a high BaP level in skin, its concentration in muscles did not exceed the maximum acceptable level. The study objective was to assess to what extent packaging materials adsorb PAH compounds from food. Changes in the PAH levels were monitored in fish during their storage in packages made of various materials. The storage time was from 0 to 168 hours. The obtained results varied considerably, therefore their scatter did not allow to confirm unequivocally the preliminary hypothesis about the reduction of PAHs due to their migration to packaging material. However, analysis of the packaging used in this study demonstrated a significant increase in the level of total 16 PAHs. When high-density polyethylene (HDPE) packaging was analysed, a six-fold increase in the total 16 PAHs was observed comparing to the blank sample.

Concepts: Polycyclic aromatic hydrocarbon, Naphthalene, Packaging and labeling, Sprattus


Coastal ecosystems, which provide numerous essential ecological functions for fish, are threatened by the proliferation of green macroalgae that significantly modify habitat conditions in intertidal areas. Understanding the influence of green tides on the nursery function of these ecosystems is essential to determine their potential effects on fish recruitment success. In this study, the influence of green tides on juvenile fish was examined in an intertidal sandy beach area, the Bay of Saint-Brieuc (Northwestern France), during two annual cycles of green tides with varying levels of intensity. The responses of three nursery-dependent fish species, the pelagic Sprattus sprattus (L.), the demersal Dicentrarchus labrax (L.) and the benthic Pleuronectes platessa L., were analysed to determine the effects of green tides according to species-specific habitat niche and behaviour. The responses to this perturbation were investigated based on habitat selection and a comparison of individual performance between a control and an impacted site. Several indices on different integrative scales were examined to evaluate these responses (antioxidant defence capacity, muscle total lipid, morphometric condition and growth). Based on these analyses, green tides affect juvenile fish differently according to macroalgal density and species-specific tolerance, which is linked to their capacity to move and to their distribution in the water column. A decreasing gradient of sensitivity was observed from benthic to demersal and pelagic fish species. At low densities of green macroalgae, the three species stayed at the impacted site and the growth of plaice was reduced. At medium macroalgal densities, plaice disappeared from the impacted site and the growth of sea bass and the muscle total lipid content of sprat were reduced. Finally, when high macroalgal densities were reached, none of the studied species were captured at the impacted site. Hence, sites affected by green tides are less favourable nursery grounds for all the studied species, with species-specific effects related to macroalgal density.

Concepts: Water, Coast, Benthos, Intertidal zone, Pelagic zone, Tide, Pelagic fish, Sprattus


A significant increase in the infection level of Baltic cod Gadus morhua with the anisakid nematode larvae Contracaecum osculatum and Pseudoterranova decipiens has been recorded during recent years due to the expanding local population of grey seals Halichoerus grypus, which act as final hosts for these parasites. Here, we report from an investigation of 368 cod (total length [TL] 6-49 cm; caught in ICES Subdivision 25) that the infection level of juvenile cod (TL 6-30 cm) with larvae of C. osculatum and P. decipiens is absent or very low, whereas it increases drastically in larger cod (TL 31-48 cm). A third nematode Hysterothylacium aduncum was rarely found. The study indicates that the prey animals for large cod act as transport hosts for the parasite larvae. Analyses of stomach contents of cod caught in the same area (2007-2014) showed that small benthic organisms (including polychaetes Harmothoë sarsi) are preferred food items by small cod, the isopod Saduria entomon is taken by all size classes, and sprat Sprattus sprattus are common prey items for cod larger than 30 cm. Parasitological investigations (microscopic and molecular analyses) of H. sarsi (100 specimens) and S. entomon (40 specimens) did not reveal infection in these invertebrates, but 11.6% of sprat (265 specimens examined) was shown to be infected with 1-8 C. osculatum third stage larvae per fish. Analyses of sprat stomach contents confirmed that copepods and cladocerans are the main food items of sprat. These observations suggest that the C. osculatum life cycle in the Baltic Sea includes grey seals as final hosts, sprat as the first transport host and cod as second transport host. It may be speculated that sprat obtain infection by feeding on copepods and/or cladocerans, which could serve as the first intermediate hosts. One cannot exclude the possibility that the size-dependent C. osculatum infection of cod may contribute (indirectly or directly) to the differential mortality of larger cod (>38 cm) compared to smaller cod (<30 cm) recently recorded in the Baltic cod population.

Concepts: Atlantic Ocean, Baltic Sea, Cod, Pinniped, Massachusetts, North Sea, Atlantic cod, Sprattus


The effect of sampling with bongo (0·6 m diameter frame with 500 µm mesh) and Methot Isaac Kidd (MIK) (2 m diameter frame with 2 mm mesh finished with 500 µm codend) nets on standard length (LS ) range and growth rate differences was tested for larval Sprattus sprattus (n = 906, LS range: 7·0-34·5 mm) collected during four cruises in the summer months of 2006, 2007, 2009 and 2010 in the southern Baltic Sea. Although the minimum size of larvae collected with the bongo and MIK nets was similar in each cruise (from c. 7 to 9 mm), the MIK nets permitted collecting larger specimens (up to c. 34 mm) than the bongo nets did (up to c. 27 mm). The growth rates of larvae collected with the bongo and MIK nets (specimens of the same size range were compared for three cruises) were not statistically different (mean = 0·55 mm day(-1) , n = 788, LS range: 7·0-27·4 mm), which means the material collected with these two nets can be combined and growth rate results between them were compared.

Concepts: Baltic Sea, Arithmetic mean, Mean, Sea, Clupeidae, Sprattus, European sprat, Baltic sprat


This article introduces “Quirks,” a generic, individual-based model synthesizing over 40 years of empirical and theoretical insights into the foraging behavior and growth physiology of marine fish larvae. In Quirks, different types of larvae are defined by a short list of their biological traits, and all foraging and growth processes (including the effects of key environmental factors) are modeled following one unified set of mechanistic rules. This approach facilitates ecologically meaningful comparisons between different species and environments. We applied Quirks to model young exogenously feeding larvae of four species: 5.5-mm European anchovy (Engraulis encrasicolus), 7-mm Atlantic cod (Gadus morhua), 13-mm Atlantic herring (Clupea harengus), and 7-mm European sprat (Sprattus sprattus). Modeled growth estimates explained the majority of variability among 53 published empirical growth estimates, and displayed very little bias: 0.65%±1.2% d-1 (mean ± standard error). Prey organisms of ∼67% the maximum ingestible prey length were optimal for all larval types, in terms of the expected ingestion per encounter. Nevertheless, the foraging rate integrated over all favorable prey sizes was highest when smaller organisms made up >95% of the prey biomass under the assumption of constant normalized size spectrum slopes. The overall effect of turbulence was consistently negative, because its detrimental influence on prey pursuit success exceeded its beneficial influence on prey encounter rate. Model sensitivity to endogenous traits and exogenous environmental factors was measured and is discussed in depth. Quirks is free software and open source code is provided.

Concepts: Actinopterygii, Cod, Commercial fish, Herring, Fish of Europe, Clupeidae, Sprattus, European sprat


Spatio-temporal density-dependent processes are crucial regulatory factors for natural populations. However, there is a lack of studies addressing spatial density-dependence in fish growth. A previous investigation has suggested spatio-temporal density-dependence in body condition of Baltic sprat. Here, we used different techniques, such as centre of gravity, distance, and homogeneity indices, to better characterize the spatial and temporal variations in sprat density and body condition in the Baltic Proper. Our results evidenced a negative spatio-temporal co-variation between the centres of gravity of density and maximum condition. In the 1980s-early 1990s both centres were located in the middle of the Baltic Proper. From the mid 1990s the centres progressively separated in space, as the sprat population moved towards the north-eastern Baltic Proper, and the centre of maximum condition towards the south-western areas. Moreover, at low abundances, sprat density and condition were homogeneously distributed in space, whereas at high abundances both density and condition showed pronounced geographical gradients. The ecological processes potentially explaining the observed patterns were discussed in the light of the Ideal Free Distribution theory. We provide evidence that the shift in the spatial distribution of cod, the main predator of sprat, has been the main factor triggering the overall spatial changes in sprat density, and thus condition, during the past thirty years. The spatial indices shown here, synthesizing the spatio-temporal patterns of fish distribution, can support the implementation of the EU Marine Strategy Framework Directive.

Concepts: Time, European Union, Space, Estonia, Poland, Latvia, Clupeidae, Sprattus