Discover the most talked about and latest scientific content & concepts.

Concept: Spore


A dark septate fungus of Pseudosigmoidea, Hyphomycetes, was recovered from forest soil in Ibaraki prefecture, Japan. The isolate is characterized by pale to brown conidia with up to 8 septa measuring 68-132 × 4-7.9 mm. It is also unique in producing conidia borne by long conidogenious cells in agar medium with or without water, compared to P. cranei, which must be immersed in water to sporulate. Morphological analysis indicated that the isolate is distinct from P. cranei and is described as a new species, P. ibarakiensis sp. nov. Pathogenicity tests of Chinese cabbage and cucumber seedlings indicated that the fungus grows as an endophyte and colonizes, inter and intracellularly, the root epidermal and cortical layers without causing apparent disease symptoms in the host. This endophyte showed the ability to support cucumber plant growth under conditions where NaNO3 was replaced by organic nitrogen but also conferred to Chinese cabbage the ability to grow at low pH. It also became successfully established in six other plants, including the Brassicae, Solanaceae, Poaceae, and Liliacea families, suggesting its adaptability to a broad range of host plants.

Concepts: Plant, Fungus, Japan, Spore, Endophyte, Prefectures of Japan, Honshū, Kantō region


Dermatophytes are classified in three genera, Epidermophyton, Microsporum and Trichophyton. They have the capacity to invade keratinized tissue to produce a cutaneous infection known as dermatophytoses. This investigation was performed to study the effect of gaseous ozone and ozonized oil on three specific properties of six different dermatophytes. These properties included sporulation, mycelia leakage of sugar and nutrients and the activity of their hydrolytic enzymes. Generally, ozonized oil was found to be more efficacious than gaseous ozone. Microsporum gypseum and Microsporum canis were the most susceptible, while Trichophyton interdigitale and T. mentagrophytes were relatively resistant. The study revealed a steady decline in spore production of M. gypseum and M. canis on application of ozonated oil. An increase in leakage of electrolytes and sugar was noticed after treatment with ozonized oil in the case of M. gypseum, M. canis, T. interdigitale, T. mentagrophytes and T. rubrum. The results also revealed loss in urease, amylase, alkaline phosphatase, lipase and keratinase enzyme producing capacity of the investigated fungi.

Concepts: Enzyme, Fungus, Spore, Arthrodermataceae


The continued success of malaria control efforts requires the development, study and implementation of new technologies that circumvent insecticide resistance. We previously demonstrated that fungal pathogens can provide an effective delivery system for mosquitocidal or malariacidal biomolecules. Here we compared genes from arthropod predators encoding insect specific sodium, potassium and calcium channel blockers for their ability to improve the efficacy of Metarhizium against wild-caught, insecticide-resistant anophelines. Toxins expressed under control of a hemolymph-specific promoter increased fungal lethality to mosquitoes at spore dosages as low as one conidium per mosquito. One of the most potent, the EPA approved Hybrid (Ca(++)/K(+) channel blocker), was studied for pre-lethal effects. These included reduced blood feeding behavior, with almost 100% of insects infected with ~6 spores unable to transmit malaria within 5 days post-infection, surpassing the World Health Organization threshold for successful vector control agents. Furthermore, recombinant strains co-expressing Hybrid toxin and AaIT (Na(+) channel blocker) produced synergistic effects, requiring 45% fewer spores to kill half of the mosquitoes in 5 days as single toxin strains. Our results identify a repertoire of toxins with different modes of action that improve the utility of entomopathogens as a technology that is compatible with existing insecticide-based control methods.

Concepts: Bacteria, Blood, Malaria, Insect, Fungus, Mosquito, Spore, World Health Organization


Millions of tons of fungal spores are dispersed in the atmosphere every year. These living cells, along with plant spores and pollen grains, may act as nuclei for condensation of water in clouds. Basidiospores released by mushrooms form a significant proportion of these aerosols, particularly above tropical forests. Mushroom spores are discharged from gills by the rapid displacement of a droplet of fluid on the cell surface. This droplet is formed by the condensation of water on the spore surface stimulated by the secretion of mannitol and other hygroscopic sugars. This fluid is carried with the spore during discharge, but evaporates once the spore is airborne. Using environmental electron microscopy, we have demonstrated that droplets reform on spores in humid air. The kinetics of this process suggest that basidiospores are especially effective as nuclei for the formation of large water drops in clouds. Through this mechanism, mushroom spores may promote rainfall in ecosystems that support large populations of ectomycorrhizal and saprotrophic basidiomycetes. Our research heightens interest in the global significance of the fungi and raises additional concerns about the sustainability of forests that depend on heavy precipitation.

Concepts: Plant, Fungus, Water, Precipitation, Liquid, Spore, Humidity, Mushroom


Hot air hand dryers in multiple men’s and women’s bathrooms in 3 basic science research areas in an academic health center were screened for their deposition on plates of: i) total bacteria, some of which were identified; and ii) a kanamycin resistantBacillus subtilisstrain, PS533, spores of which are produced in large amounts in one basic science research laboratory. Plates exposed to hand dryer air for 30 seconds averaged 18-60 colonies/plate but interior hand dryer nozzle surfaces had minimal bacterial levels, plates exposed to bathroom air for 2 minutes with hand dryers off averaged ≤1 colony, and plates exposed to bathroom air moved by a small fan for 20 minutes had averages of 15 and 12 colonies/plate in two buildings tested. Retrofitting hand dryers with HEPA filters reduced bacterial deposition by hand dryers ∼4-fold, and potential human pathogens were recovered from plates exposed to hand dryer air whether or not a HEPA filter was present, and from bathroom air moved by a small fan. Spore-forming colonies, identified asB. subtilisPS533 averaged ∼2.5-5% of bacteria deposited by hand dryers throughout basic research areas examined regardless of distance from the spore forming laboratory, and these were almost certainly deposited as spores. Comparable results were obtained when bathroom air was sampled for spores. These results indicate that many kinds of bacteria, including potential pathogens and spores, can be deposited on hands exposed to bathroom hand dryers, and that spores could be dispersed throughout buildings and deposited on hands by hand dryers.ImportanceWhile there is evidence that bathroom hand dryers can disperse bacteria from hands or deposit bacteria on surfaces, including recently washed hands, there is less information on: i) the organisms dispersed by hand dryers; ii) if hand dryers provide a reservoir of bacteria or simply blow large amounts of bacterially contaminated air; and iii) if bacterial spores are deposited on surfaces by hand dryers. Consequently, this study has implications for the control of opportunistic bacterial pathogens and spores in public environments including healthcare settings. Within a large building, potentially pathogenic bacteria including bacterial spores may travel between rooms, and subsequent bacterial/spore deposition by hand dryers is a possible mechanism for spread of infectious bacteria including spores of potential pathogens if present.

Concepts: Bacteria, Microbiology, Research, Pathogen, Spore, Pathogenic bacteria, HEPA, Hand dryer


Pucciniamonoica is a spectacular plant parasitic rust fungus that triggers the formation of flower-like structures (pseudoflowers) in its Brassicaceae host plant Boecherastricta. Pseudoflowers mimic in shape, color, nectar and scent co-occurring and unrelated flowers such as buttercups. They act to attract insects thereby aiding spore dispersal and sexual reproduction of the rust fungus. Although much ecological research has been performed on P. monoica-induced pseudoflowers, this system has yet to be investigated at the molecular or genomic level. To date, the molecular alterations underlying the development of pseudoflowers and the genes involved have not been described. To address this, we performed gene expression profiling to reveal 256 plant biological processes that are significantly altered in pseudoflowers. Among these biological processes, plant genes involved in cell fate specification, regulation of transcription, reproduction, floral organ development, anthocyanin (major floral pigments) and terpenoid biosynthesis (major floral volatile compounds) were down-regulated in pseudoflowers. In contrast, plant genes involved in shoot, cotyledon and leaf development, carbohydrate transport, wax biosynthesis, cutin transport and L-phenylalanine metabolism (pathway that results in phenylethanol and phenylacetaldehyde volatile production) were up-regulated. These findings point to an extensive reprogramming of host genes by the rust pathogen to induce floral mimicry. We also highlight 31 differentially regulated plant genes that are enriched in the biological processes mentioned above, and are potentially involved in the formation of pseudoflowers. This work illustrates the complex perturbations induced by rust pathogens in their host plants, and provides a starting point for understanding the molecular mechanisms of pathogen-induced floral mimicry.

Concepts: DNA, Gene, Genetics, Gene expression, Bacteria, Organism, Fungus, Spore


Airborne pollen and fungal spores are monitored mainly in highly populated, urban environments, for allergy prevention purposes. However, their sources can frequently be located outside cities' fringes with more vegetation. So as to shed light to this paradox, we investigated the diversity and abundance of airborne pollen and fungal spores at various environmental regimes. We monitored pollen and spores using an aircraft and a car, at elevations from sea level to 2,000 m above ground, in the region of Thesssaloniki, Greece. We found a total of 24 pollen types and more than 15 spore types. Pollen and spores were detected throughout the elevational transect. Lower elevations exhibited higher pollen concentrations in only half of plant taxa and higher fungal spore concentrations in only Ustilago. Pinaceae and Quercus pollen were the most abundant recorded by airplane (>54% of the total). Poaceae pollen were the most abundant via car measurements (>77% of the total). Cladosporium and Alternaria spores were the most abundant in all cases (aircraft: >69% and >17%, car: >45% and >27%, respectively). We conclude that pollen and fungal spores can be diverse and abundant even outside the main source area, evidently because of long-distance transport incidents.

Concepts: Plant, Fungus, Spore, Flower, Gametophyte


Evaluating different swabbing materials for spore recovery efficiency (RE) from steel surfaces, we recorded the maximum RE (71%) of 10(7) Bacillus subtilis spores with Tulips cotton buds, followed by Johnson’s cotton buds and standard Hi-Media cotton, polyester, nylon, and foam (23%) swabs. Among cotton swabs, instant water-absorbing capacity or the hydrophilicity index appeared to be the major indicator of RE, as determined by testing three more brands. Tulips swabs worked efficiently across diverse nonporous surfaces and on different Bacillus spp., registering 65 to 77% RE.

Concepts: Cotton, Spore, Bacillus, Asexual reproduction, Bacillus subtilis, Endospore, American inventions, Cotton swab


Endozoochory plays a prominent role for the dispersal of seed plants, and dispersal vectors are well known. However, for taxa such as ferns and bryophytes, endozoochory has only been suggested anecdotally but never tested in controlled experiments. We fed fertile leaflets of three ferns and capsules of four bryophyte species to three slug species. We found that, overall, spores germinated from slug feces in 57.3 % of all 89 fern and in 51.3 % of all 117 bryophyte samples, showing that the spores survived gut passage of slugs. Moreover, the number of samples within which spores successfully germinated did not differ among plant species but varied strongly among slug species. This opens new ecological perspectives suggesting that fern and bryophyte endozoochory by gastropods is a so-far-overlooked mode of dispersal, which might increase local population sizes of these taxa by spore deposition on suitable substrates.

Concepts: Plant, Fungus, Spore, Fern, Sporangium, Bryophyte, Embryophyte, Moss


Bacillus subtilis endospores have applications in different fields including their use as probiotics and antigen delivery vectors. Such specialized applications frequently require highly purified spore preparations. Nonetheless, quantitative data regarding both yields and purity of B. subtilis endospores after application of different growth conditions and purification methods are scarce or poorly reported. In the present study, we conducted several quantitative and qualitative analyses of growth conditions and purification procedures aiming generation of purified B. subtilis spores. Based on two growth media and different incubations conditions, sporulation frequencies up to 74.2 % and spore concentrations up to 7 × 10(9) spores/ml were achieved. Application of a simplified spore isolation method, in which samples were incubated with lysozyme and a detergent, resulted in preparations with highly purified spores at the highest yields. The present study represents, therefore, an important contribution for those working with B. subtilis endospores for different biotechnological purposes.

Concepts: Bacteria, Microbiology, Qualitative research, Spore, Bacillus, Quantitative research, Bacillus subtilis, Endospore