Discover the most talked about and latest scientific content & concepts.

Concept: Spider silk


The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

Concepts: Carbon dioxide, Redox, Nitrogen, Carbon, Carbon nanotube, Graphene, Tensile strength, Spider silk


Correlated evolution of traits can act synergistically to facilitate organism function. But, what happens when constraints exist on the evolvability of some traits, but not others? The orb web was a key innovation in the origin of >12,000 species of spiders. Orb evolution hinged upon the origin of novel spinning behaviors and innovations in silk material properties. In particular, a new major ampullate spidroin protein (MaSp2) increased silk extensibility and toughness, playing a critical role in how orb webs stop flying insects. Here, we show convergence between pseudo-orb-weaving Fecenia and true orb spiders. As in the origin of true orbs, Fecenia dragline silk improved significantly compared to relatives. But, Fecenia silk lacks the high compliance and extensibility found in true orb spiders, likely due in part to the absence of MaSp2. Our results suggest how constraints limit convergent evolution and provide insight into the evolution of nature’s toughest fibers.

Concepts: Evolution, Organism, Insect, Materials science, Spider silk, Spider, Spider web, Orb-weaver spider


Issues of surfaces, e.g., inspired from beetle’s back, spider silk, cactus stem, etc., become the active area of research on designing novel materials in need of human beings to acquire fresh water resource from air. However, the design of materials on surface structure is little achieved on controlling of micro-scale drop transport in a long distance. Here, we report the ability of micro-drop transport in a long distance on a bioinspired Fibers with Gradient Spindle-knots (BFGS), which are fabricated by tilt angle dip-coating method. The micro-drop of ~0.25 μL transports in distance of ~5.00 mm, with velocity of 0.10-0.22 m s(-1) on BFGS. It is attributed to the multi-level cooperation of the release energy of drop coalescence along the gradient spindle-knots, in addition to capillary adhesion force and continuous difference of Laplace pressure, accordingly, water drops are driven to move fast directionally in a long distance on BFGS.

Concepts: Human, Water, Addition, Transport, Surface, Water resources, Silk, Spider silk


An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this “liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

Concepts: Calculus, Liquid, Surface tension, Arachnid, Spider silk, Spider, Wire, Mechanical


Understanding the compatibility between spider silk and conducting materials is essential to advance the use of spider silk in electronic applications. Spider silk is tough, but becomes soft when exposed to water. Here we report a strong affinity of amine-functionalised multi-walled carbon nanotubes for spider silk, with coating assisted by a water and mechanical shear method. The nanotubes adhere uniformly and bond to the silk fibre surface to produce tough, custom-shaped, flexible and electrically conducting fibres after drying and contraction. The conductivity of coated silk fibres is reversibly sensitive to strain and humidity, leading to proof-of-concept sensor and actuator demonstrations.

Concepts: Continuum mechanics, Carbon nanotube, Materials science, Tensile strength, Fiber, Silk, Spider silk, Spider


The teeth of limpets exploit distinctive composite nanostructures consisting of high volume fractions of reinforcing goethite nanofibres within a softer protein phase to provide mechanical integrity when rasping over rock surfaces during feeding. The tensile strength of discrete volumes of limpet tooth material measured using in situ atomic force microscopy was found to range from 3.0 to 6.5 GPa and was independent of sample size. These observations highlight an absolute material tensile strength that is the highest recorded for a biological material, outperforming the high strength of spider silk currently considered to be the strongest natural material, and approaching values comparable to those of the strongest man-made fibres. This considerable tensile strength of limpet teeth is attributed to a high mineral volume fraction of reinforcing goethite nanofibres with diameters below a defect-controlled critical size, suggesting that natural design in limpet teeth is optimized towards theoretical strength limits.

Concepts: Scientific method, Thermodynamics, Materials science, Tensile strength, Fiber, Pressure, Teeth, Spider silk


Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider’s many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress–involving softening at a yield point and substantial stiffening at large strain until failure–as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web’s structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.

Concepts: Tensile strength, Elasticity, Linear elasticity, Silk, Spider silk, Spider, Spider web, Spinneret


Hagfish slime threads, which make up the fibrous component of the defensive slime of hagfishes, consist primarily of proteins from the intermediate filament family of proteins and possess impressive mechanical properties that make them attractive biomimetic models. To investigate whether solubilized intermediate filament proteins can be used to make high-performance, environmentally sustainable materials, we cast thin films on the surface of electrolyte buffers using solubilized hagfish slime thread proteins. The films were drawn into fibers, and the tensile properties were measured. Fiber mechanics depended on casting conditions and postspinning processing. Postsecondary drawing resulted in fibers with improved material properties similar to those of regenerated silk fibers. Structural analyses of the fibers revealed increased molecular alignment resulting from the second draw, but no increase in crystallinity. Our findings show promise for intermediate filament proteins as an alternative source for the design and production of high performance protein-based fibers.

Concepts: Cytoskeleton, Tensile strength, Fiber, Materials, Dietary fiber, Spider silk, Hagfish, Fibers


Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured-leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.

Concepts: Scattering, Tensile strength, Young's modulus, Elasticity, Elastic modulus, Spider silk, Spider, Deformation


Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Orb webs can be divided into two categories according to the capture silk used in construction: cribellate orb webs (composed of pseudoflagelliform silk) coated with dry cribellate threads and ecribellate orb webs (composed of flagelliform silk fibres) coated by adhesive glue droplets. Cribellate capture silk is generally stronger but less-extensible than viscid capture silk, and a body of phylogenic evidence suggests that cribellate capture silk is more closely related to the ancestral form of capture spiral silk. Here, we use a coarse-grained web model to investigate how the mechanical properties of spiral capture silk affect the behaviour of the whole web, illustrating that more elastic capture spiral silk yields a decrease in web system energy absorption, suggesting that the function of the capture spiral shifted from prey capture to other structural roles. Additionally, we observe that in webs with more extensible capture silk, the effect of thread strength on web performance is reduced, indicating that thread elasticity is a dominant driving factor in web diversification.

Concepts: World Wide Web, Web 2.0, Silk, Adhesive, Spider silk, Spider, Spider web, Spider anatomy