Discover the most talked about and latest scientific content & concepts.

Concept: Specimen


The Rising Star cave system has produced abundant fossil hominin remains within the Dinaledi Chamber, representing a minimum of 15 individuals attributed to Homo naledi. Further exploration led to the discovery of hominin material, now comprising 131 hominin specimens, within a second chamber, the Lesedi Chamber. The Lesedi Chamber is far separated from the Dinaledi Chamber within the Rising Star cave system, and represents a second depositional context for hominin remains. In each of three collection areas within the Lesedi Chamber, diagnostic skeletal material allows a clear attribution to H. naledi. Both adult and immature material is present. The hominin remains represent at least three individuals based upon duplication of elements, but more individuals are likely present based upon the spatial context. The most significant specimen is the near-complete cranium of a large individual, designated LES1, with an endocranial volume of approximately 610 ml and associated postcranial remains. The Lesedi Chamber skeletal sample extends our knowledge of the morphology and variation of H. naledi, and evidence of H. naledi from both recovery localities shows a consistent pattern of differentiation from other hominin species.

Concepts: Sample, DNA, Human, Individual, Cave, Specimen, Cave Automatic Virtual Environment, The Rising


Understanding high-velocity microparticle impact is essential for many fields, from space exploration to medicine and biology. Investigations of microscale impact have hitherto been limited to post-mortem analysis of impacted specimens, which does not provide direct information on the impact dynamics. Here we report real-time multi-frame imaging studies of the impact of 7 μm diameter glass spheres traveling at 700-900 m/s on elastomer polymers. With a poly(urethane urea) (PUU) sample, we observe a hyperelastic impact phenomenon not seen on the macroscale: a microsphere undergoes a full conformal penetration into the specimen followed by a rebound which leaves the specimen unscathed. The results challenge the established interpretation of the behaviour of elastomers under high-velocity impact.

Concepts: Sample, Medicine, Biology, Polymer, Elastomer, Space exploration, Specimen, Ethylene-vinyl acetate


The iconic primeval bird Archaeopteryx was so far mainly known from the Altmühltal Formation (early Tithonian) of Bavaria, southern Germany, with one specimen having been found in the overlying Mörnsheim Formation. A new specimen (the 12th skeletal specimen) from the earliest Tithonian Painten Formation of Schamhaupten (Bavaria) represents the so far oldest representative of the genus. The new specimen shows several interesting anatomical details, including the presence of a postorbital in contact with the jugal, the presence of a separate prefrontal and coronoid, and opisthocoelous mid-cervical vertebrae. Based on observations on the new specimen, we discuss several problematic issues concerning Archaeopteryx, including the monophyly and diagnosis of the genus, the absence/presence of the sternum, the position of the gastralia, and variation in morphometrics and dental morphology in that genus. Based on a new diagnosis for the genus Archaeopteryx, the Berlin, Eichstätt, Solnhofen, Munich, Daiting, Thermopolis, 11th, and 12th specimens can be referred to this genus with high certainty. The Maxberg specimen is very probably also an Archaeopteryx, based on overall similarity, although none of the diagnostic characters can be evaluated with certainty. The ninth specimen (‘chicken wing’) might be Archaeopteryx, but cannot be referred to the genus with any certainty. In comparison with other paravians, the presence of distally thickened anterior pectoral ribs indicates that a rather large cartilagenous sternum was present in this taxon. In contrast to non-opisthopubic theropods, opisthopubic taxa, such as Archaeopteryx and many other paravians, have the posterior end of the gastral basket preserved at about half-length of the pubis, which might reflect the post-mortem collapse of enlarged abdominal air sacs in these taxa. Specimens that can be referred to Archaeopteryx show a high amount of variation, both in the morphometrics of the limb bones as well as in the dentition. In respect to the latter aspect, variation is found in tooth number, spacing, orientation, and morphology, with no two specimens showing the exact same pattern. The significance of this variation is unclear, and possible explanations reach from high intraspecific (and possibly ontogenetic and/or sexual dimorphic) variation to the possibility that the known specimens represent a ‘species flock’ of Archaeopteryx, possibly due to island speciation after the initial dispersal of the genus into the Solnhofen Archipelago.

Concepts: Biology, Species, Bird, Teeth, Specimen, Archaeopteryx, Theropoda, International Code of Zoological Nomenclature


Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented.

Concepts: Scientific method, Regression analysis, Statistics, Prediction, Curve, Specimen, Curves, Asymptote


Ti-51Ni (at%) alloys including coherent precipitates of Ti3Ni4 exhibits thermally-induced B2-R transformation. If the Ti3Ni4 is formed under tensile stress, it orientates preferentially so that its habit plane becomes perpendicular to the tensile axis. In such specimens, stress-induced reverse R-B2 transformation is reported to occur. In the present study, the stress-induced reverse R-B2 transformation behavior was studied by infrared camera and in situ X-ray analysis. The infrared camera observation revealed that the temperature of the specimen decreases homogeneously by the application of tensile stress within the resolution of the camera. The in situ X-ray analysis revealed that stress-induced reverse R-B2 transformation and rearrangement of variants of the R-phase occurs simultaneously in the specimen.

Concepts: Present, Zinc, Solid, Tensile strength, Perpendicular, Alloy, Specimen, Thermography


Prophylactic skin-sparing mastectomy (SSM) is associated with major breast cancer risk reduction in high-risk patients. In prophylactic nipple-sparing mastectomy (NSM) it is unknown how many terminal duct lobular units (TDLUs) remain behind the nipple-areola complex (NAC) additionally to those behind the skin flap. Therefore, safety of NSM can be doubted. We compared amounts of TDLUs behind the NAC as compared with the skin. In prophylactic SSM and conventional therapeutic mastectomy patients, the NAC and an adjacent skin island (SI) were resected as if it were an NSM. NAC and SI were serially sectioned perpendicularly to the skin and analyzed for the amount of TDLUs present. Slides of NAC and SI were scanned, and slide surface areas (cm) were measured. TDLUs/cm in NAC versus SI specimen, representing TDLU density, were analyzed pairwise. In total, 105 NACs and SIs of 90 women were analyzed. Sixty-four NACs (61%) versus 25 SIs (24%) contained ≥1 TDLUs. Median TDLU density was higher in NAC specimens (0.2 TDLUs/cm) as compared with SI specimens (0.0 TDLUs/cm; P<0.01). Independent risk factors for the presence of TDLUs in the NAC specimen were younger age and parity (vs. nulliparity). The finding of higher TDLU density behind the NAC as compared with the skin flap suggests that sparing the NAC in prophylactic NSM in high-risk patients possibly may increase postoperative breast cancer risk as compared with prophylactic SSM. Studies with long-term follow-up after NSM are warranted to estimate the level of residual risk.

Concepts: Cancer, Breast cancer, Metastasis, Carcinoma in situ, Breast, Units of measurement, Specimen, Radical mastectomy


Limulus polyphemus, an archetypal chelicerate taxon, has interested both biological and paleontological researchers due to its unique suite of anatomical features and as a useful modern analogue for fossil arthropod groups. To assist the study and documentation of this iconic taxon, we present a 3D atlas on the appendage musculature, with specific focus on the muscles of the cephalothoracic appendages. As L. polyphemus appendage musculature has been the focus of extensive study, depicting the muscles in 3D will facilitate a more complete understanding thereof for future researchers. A large museum specimen was CT scanned to illustrate the major exoskeletal features of L. polyphemus. Micro-CT scans of iodine-stained appendages from fresh, non-museum specimens were digitally dissected to interactively depict appendage sections and muscles. This study has revealed the presence of two new muscles: one within the pushing leg, located dorsally relative to all other patella muscles, and the other within the male pedipalp, located in the modified tibiotarsus. This atlas increases accessibility to important internal and external morphological features of L. polyphemus and reduces the need for destructive fresh tissue dissection of specimens. Scanning, digitally dissecting, and documenting taxa in 3D is a pivotal step towards creating permanent digital records of life on Earth.

Concepts: Sample, Biology, Anatomy, Aortic dissection, Specimen, Antenna, Dissection, Xiphosura


The dissolution of the delicate shells of sea butterflies, or pteropods, has epitomised discussions regarding ecosystem vulnerability to ocean acidification over the last decade. However, a recent demonstration that the organic coating of the shell, the periostracum, is effective in inhibiting dissolution suggests that pteropod shells may not be as susceptible to ocean acidification as previously thought. Here we use micro-CT technology to show how, despite losing the entire thickness of the original shell in localised areas, specimens of polar species Limacina helicina maintain shell integrity by thickening the inner shell wall. One specimen collected within Fram Strait with a history of mechanical and dissolution damage generated four times the thickness of the original shell in repair material. The ability of pteropods to repair and maintain their shells, despite progressive loss, demonstrates a further resilience of these organisms to ocean acidification but at a likely metabolic cost.

Concepts: Biology, Organism, Oceanography, Demonstration, Shell, Ocean, Specimen, Ocean acidification


We recently developed a method called expansion microscopy, in which preserved biological specimens are physically magnified by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ∼4.5××Iterative expansion microscopyJae-Byum Chang1,2, Fei Chen3, Young-Gyu Yoon1,4, Erica E Jung1, Hazen Babcock5, Jeong Seuk Kang6, Shoh Asano1, Ho-Jun Suk7, Nikita Pak8, Paul W Tillberg4, Asmamaw T Wassie3, Dawen Cai9 &Edward S Boyden1,3,10,11We recently developed a method called expansion microscopy, in which preserved biological specimens are physically magnified by embedding them in a densely crosslinked polyelectrolyte gel, anchoring key labels or biomolecules to the gel, mechanically homogenizing the specimen, and then swelling the gel-specimen composite by ~4.5× in linear dimension. Here we describe iterative expansion microscopy (iExM), in which a sample is expanded ∼20×. After preliminary expansion a second swellable polymer mesh is formed in the space newly opened up by the first expansion, and the sample is expanded again. iExM expands biological specimens ∼4.5 × 4.5, or ∼20×, and enables ∼25-nm-resolution imaging of cells and tissues on conventional microscopes. We used iExM to visualize synaptic proteins, as well as the detailed architecture of dendritic spines, in mouse brain circuitry.

Concepts: Sample, Protein, Molecular biology, Biology, Organism, Microscope, Microscopy, Specimen


The detection of an STI agent in a urogenital tract (UGT) specimen from a young child is regarded as being indicative of sexual abuse. However, the probabilities of contamination events that could conceivably lead to STI positive specimens in the absence of sexual contact are unclear. The objective was to estimate the potential for fingers that have come in contact with Chlamydia trachomatis-positive urine to detectably contaminate C. trachomatis-negative urine.

Concepts: Sample, Sexual intercourse, Human sexual behavior, Child abuse, Specimen, In the Absence of Truth