Discover the most talked about and latest scientific content & concepts.

Concept: Spacetime


Although most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources. Our models predict that ectotherms thermoregulate more accurately when thermal resources are dispersed throughout space than when these resources are clumped. This prediction was supported by thermoregulatory behaviors of lizards in outdoor arenas with known distributions of environmental temperatures. Further, simulations showed how the spatial structure of the landscape qualitatively affects responses of animals to climate. Biologists will need spatially explicit models to predict impacts of climate change on local scales.

Concepts: Time, Physics, General relativity, Natural environment, Space, Spacetime, Universe, Philosophy of space and time


That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein’s postulate in special relativity. This has been a basic assumption in light’s various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light’s group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam’s divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.

Concepts: Quantum mechanics, Fundamental physics concepts, Physics, Maxwell's equations, General relativity, Spacetime, Special relativity, Speed of light


While humans are capable of mentally transcending the here and now, this faculty for mental time travel (MTT) is dependent upon an underlying cognitive representation of time. To this end, linguistic, cognitive and behavioral evidence has revealed that people understand abstract temporal constructs by mapping them to concrete spatial domains (e.g. past = backward, future = forward). However, very little research has investigated factors that may determine the topographical characteristics of these spatiotemporal maps. Guided by the imperative role of episodic content for retrospective and prospective thought (i.e., MTT), here we explored the possibility that the spatialization of time is influenced by the amount of episodic detail a temporal unit contains. In two experiments, participants mapped temporal events along mediolateral (Experiment 1) and anterioposterior (Experiment 2) spatial planes. Importantly, the temporal units varied in self-relevance as they pertained to temporally proximal or distal events in the participant’s own life, the life of a best friend or the life of an unfamiliar other. Converging evidence from both experiments revealed that the amount of space used to represent time varied as a function of target (self, best friend or unfamiliar other) and temporal distance. Specifically, self-time was represented as occupying more space than time pertaining to other targets, but only for temporally proximal events. These results demonstrate the malleability of space-time mapping and suggest that there is a self-specific conceptualization of time that may influence MTT as well as other temporally relevant cognitive phenomena.

Concepts: Time, Physics, General relativity, Space, Spacetime, Map, Universe, Gottfried Leibniz


That the speed of light in free space is constant is a cornerstone of modern physics. However, light beams have finite transverse size, which leads to a modification of their wavevectors resulting in a change to their phase and group velocities. We study the group velocity of single photons by measuring a change in their arrival time that results from changing the beam’s transverse spatial structure. Using time-correlated photon pairs we show a reduction of the group velocity of photons in both a Bessel beam and photons in a focused Gaussian beam. In both cases, the delay is several micrometers over a propagation distance of the order of 1 m. Our work highlights that, even in free space, the invariance of the speed of light only applies to plane waves.

Concepts: Quantum mechanics, Optics, Physics, Light, Electromagnetic radiation, Spacetime, Group velocity, Speed of light


In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-negative matrix factorization (NMF) - a dimensionality reduction technique - to uncover structure in a panel of odor profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from chemical structures.

Concepts: Dimension, Euclidean space, Vector space, Space, Spacetime, Linear algebra, Real number, Point


The capture of transient scenes at high imaging speed has been long sought by photographers, with early examples being the well known recording in 1878 of a horse in motion and the 1887 photograph of a supersonic bullet. However, not until the late twentieth century were breakthroughs achieved in demonstrating ultrahigh-speed imaging (more than 10(5) frames per second). In particular, the introduction of electronic imaging sensors based on the charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) technology revolutionized high-speed photography, enabling acquisition rates of up to 10(7) frames per second. Despite these sensors' widespread impact, further increasing frame rates using CCD or CMOS technology is fundamentally limited by their on-chip storage and electronic readout speed. Here we demonstrate a two-dimensional dynamic imaging technique, compressed ultrafast photography (CUP), which can capture non-repetitive time-evolving events at up to 10(11) frames per second. Compared with existing ultrafast imaging techniques, CUP has the prominent advantage of measuring an x-y-t (x, y, spatial coordinates; t, time) scene with a single camera snapshot, thereby allowing observation of transient events with temporal resolution as tens of picoseconds. Furthermore, akin to traditional photography, CUP is receive-only, and so does not need the specialized active illumination required by other single-shot ultrafast imagers. As a result, CUP can image a variety of luminescent–such as fluorescent or bioluminescent–objects. Using CUP, we visualize four fundamental physical phenomena with single laser shots only: laser pulse reflection and refraction, photon racing in two media, and faster-than-light propagation of non-information (that is, motion that appears faster than the speed of light but cannot convey information). Given CUP’s capability, we expect it to find widespread applications in both fundamental and applied sciences, including biomedical research.

Concepts: Optics, Light, Spacetime, 20th century, CMOS, Image sensor, Image processing, Frame rate


In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000-2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs' and IFLs' locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses.

Concepts: Time, General relativity, Space, Spacetime, Asia, Oceania, Central Asia, Forests


The melting of polar ice sheets is a major contributor to global sea-level rise. Early estimates of the mass lost from the Greenland ice cap, based on satellite gravity data collected by the Gravity Recovery and Climate Experiment, have widely varied. Although the continentally and decadally averaged estimated trends have now more or less converged, to this date, there has been little clarity on the detailed spatial distribution of Greenland’s mass loss and how the geographical pattern has varied on relatively shorter time scales. Here, we present a spatially and temporally resolved estimation of the ice mass change over Greenland between April of 2002 and August of 2011. Although the total mass loss trend has remained linear, actively changing areas of mass loss were concentrated on the southeastern and northwestern coasts, with ice mass in the center of Greenland steadily increasing over the decade.

Concepts: Time, General relativity, Ice sheet, Greenland ice sheet, Space, Spacetime, Universe, Gravity Recovery and Climate Experiment


Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm(-2) irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 10(2) μm(2), an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution.

Concepts: Electron, Photon, Quantum mechanics, Matter, Chemistry, Atom, Force, Spacetime


Over the last few decades, the occupation of the Amazon and the expansion of large-scale economic activities have exerted a significant negative impact on the Amazonian environment and on the health of the Amazon’s inhabitants. These processes have altered the context of the manifestation of health problems in time and space and changed the characteristics of the spatial diffusion of health problems in the region. This study analyzed the relationships between the various economic processes of territorial occupation in the Amazon and the spatial diffusion of homicidal violence through the configuration of networks of production, as well as the movements of population and merchandise. Statistical data on violence, deforestation, the production of agricultural items, and socio-economic variables, georeferenced and available for the 771 municipalities of the Legal Amazon were used in this study. The results suggest that the diffusion of violence closely follows the economic expansion front, which is related to deforestation and livestock production but has little relation to grain production, demonstrating steps and typologies of recent occupation in the Amazon that promote violence. These spatial patterns reveal environmental and socio-economic macro-determinants that materialize in geographic space through the construction of highways and the formation of city networks.

Concepts: Time, Geography, Economics, Space, Spacetime, Social sciences, Amazon Basin, Amazon Rainforest