Discover the most talked about and latest scientific content & concepts.

Concept: Sorghum


Abstract Soaking of cereal grains has been suggested as a method to reduce their phytate content and hence increase their mineral availability. Whole and milled wholegrain, normal and low phytate sorghum and normal maize were studied. Soaking of unmilled sorghum and maize did not result in substantial reductions in phytate or mineral contents. With milled grains, phytate solubilisation was somewhat greater in maize than in sorghum after a short (1 h) soaking period but not after 6-12 h of soaking when practically all phytate had been solubilised. Also, with milled, low phyate sorghums, phytate solubilisation was not substantially higher than in their null controls. Soaking milled grain substantially reduced mineral contents and Ca × phytate:zinc molar ratios. However, the loss in soluble minerals could have a greater negative effect on mineral availability, compared to the positive effect of the phytate reduction. Thus, soaking does not seem to be a viable household method to improve sorghum and maize mineral availability.

Concepts: Effect, Poaceae, Mineral, Cereal, Rice, Bran, Sorghum, Whole grain


Grain number per panicle (GNP) is a major determinant of grain yield in cereals. However, the mechanisms that regulate GNP remain unclear. To address this issue, we isolate a series of sorghum [Sorghum bicolor (L.) Moench] multiseeded (msd) mutants that can double GNP by increasing panicle size and altering floral development so that all spikelets are fertile and set grain. Through bulk segregant analysis by next-generation sequencing, we identify MSD1 as a TCP (Teosinte branched/Cycloidea/PCF) transcription factor. Whole-genome expression profiling reveals that jasmonic acid (JA) biosynthetic enzymes are transiently activated in pedicellate spikelets. Young msd1 panicles have 50% less JA than wild-type (WT) panicles, and application of exogenous JA can rescue the msd1 phenotype. Our results reveal a new mechanism for increasing GNP, with the potential to boost grain yield, and provide insight into the regulation of plant inflorescence architecture and development.

Concepts: Gene, Gene expression, Poaceae, Fertility, Cereal, Maize, Sorghum, Inflorescence


Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S-transferase (GST) activity. In previous research, two atrazine-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR) displayed rapid formation of atrazine-glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalyzed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analyzed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulfate and GSH affinity-purified fractions compared to an atrazine-sensitive population (WCS). One-dimensional electrophoresis of these fractions displayed an approximate 26-kDa band, typical of GST subunits. Several phi- and tau-class GSTs were identified by LC-MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi-class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR. This article is protected by copyright. All rights reserved.

Concepts: Protein, Metabolism, Glutathione, Cereal, Maize, Glutathione S-transferase, Copyright, Sorghum


Comparisons between C3 and C4 grasses often utilize C3 species from the subfamilies Ehrhartoideae or Pooideae and C4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C3 panicoid grass Dichanthelium oligosanthes from the independent C4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C3 and C4 grasses.

Concepts: Family, Species, Poaceae, Cladistics, Sorghum, Grass, Panicoideae


Sorghum (Sorghum bicolor) is globally produced as a source of food, feed, fiber and fuel. Grain and sweet sorghums differ in a number of important traits, including stem sugar and juice accumulation, plant height as well as grain and biomass production. The first whole genome sequence of a grain sorghum is available, but additional genome sequences are required to study genome-wide and intraspecific variation for dissecting the genetic basis of these important traits and for tailor-designed breeding of this important C4 crop.

Concepts: DNA, Photosynthesis, Gene, Genetics, Genome, Genomics, Poaceae, Sorghum


Cadmium (Cd) is a widespread soil contaminant threatening human health. As an ideal energy plant, sweet sorghum (Sorghum bicolor (L.) Moench) has great potential in phytoremediation of Cd polluted soils, although the molecular mechanisms are largely unknown. In this study, key factors responsible for differential Cd accumulation between two contrasting sweet sorghum genotypes (high-Cd accumulation one H18, and low-Cd accumulation one L69) were investigated. H18 exhibited a much higher ability of Cd uptake and translocation than L69. Furthermore, Cd uptake through symplasmic pathway and Cd concentrations in xylem sap were both higher in H18 than those in L69. Root anatomy observation found the endodermal apoplasmic barriers were much stronger in L69, which may restrict the Cd loading into xylem. The molecular mechanisms underlying these morpho-physiological traits were further dissected by comparative transcriptome analysis. Many genes involved in cell wall modification and heavy metal transport were found to be Cd-responsive DEGs and/or DEGs between these two genotypes. KEGG pathway analysis found phenylpropanoid biosynthesis pathway was over-represented, indicating this pathway may play important roles in differential Cd accumulation between two genotypes. Based on these results, a schematic representation of main processes involved in differential Cd uptake and translocation in H18 and L69 is proposed, which suggests that higher Cd accumulation in H18 depends on a multi-level co-ordination of efficient Cd uptake and transport, including efficient root uptake and xylem loading, less root cell wall binding, and weaker endodermal apoplasmic barriers. This article is protected by copyright. All rights reserved.

Concepts: Genetics, Soil, All rights reserved, Xylem, Soil contamination, Copyright, Sorghum, Plant sap


Coordinated association and linkage mapping identified 25 grain quality QTLs in multiple environments, and fine mapping of the Wx locus supports the use of high-density genetic markers in linkage mapping. There is a wide range of end-use products made from cereal grains, and these products often demand different grain characteristics. Fortunately, cereal crop species including sorghum [Sorghum bicolor (L.) Moench] contain high phenotypic variation for traits influencing grain quality. Identifying genetic variants underlying this phenotypic variation allows plant breeders to develop genotypes with grain attributes optimized for their intended usage. Multiple sorghum mapping populations were rigorously phenotyped across two environments (SC Coastal Plain and Central TX) in 2 years for five major grain quality traits: amylose, starch, crude protein, crude fat, and gross energy. Coordinated association and linkage mapping revealed several robust QTLs that make prime targets to improve grain quality for food, feed, and fuel products. Although the amylose QTL interval spanned many megabases, the marker with greatest significance was located just 12 kb from waxy (Wx), the primary gene regulating amylose production in cereal grains. This suggests higher resolution mapping in recombinant inbred line (RIL) populations can be obtained when genotyped at a high marker density. The major QTL for crude fat content, identified in both a RIL population and grain sorghum diversity panel, encompassed the DGAT1 locus, a critical gene involved in maize lipid biosynthesis. Another QTL on chromosome 1 was consistently mapped in both RIL populations for multiple grain quality traits including starch, crude protein, and gross energy. Collectively, these genetic regions offer excellent opportunities to manipulate grain composition and set up future studies for gene validation.

Concepts: DNA, Gene, Genetics, Wheat, Cereal, Maize, Rice, Sorghum


Colletotrichum sublineola is an aggressive fungal pathogen that causes anthracnose in sorghum (Sorghum bicolor (L.) Moench). The obvious symptoms of anthracnose are leaf blight and stem rot. Sorghum, the fifth most widely grown cereal crop in the world, can be highly susceptible to the disease, most notably in hot and humid environments. In the southeastern United States the acreage of sorghum has been increasing steadily in recent years, spurred by growing interest in producing biofuels, bio-based products, and animal feed. Resistance to anthracnose is, therefore, of paramount importance for successful sorghum production in this region. To identify anthracnose resistance loci present in the highly resistant cultivar ‘Bk7’, a biparental mapping population of F3:4 and F4:5 sorghum lines was generated by crossing ‘Bk7’ with the susceptible inbred ‘Early Hegari-Sart’. Lines were phenotyped in three environments and two years following natural infection. The population was genotyped by sequencing. Following a stringent custom filtering protocol, a total of 5,186 and 2,759 informative SNP markers were identified in the two populations. Segregation data and association analysis identified resistance loci on chromosomes 7 and 9, with the resistance alleles derived from ‘Bk7’. Both loci contain multiple classes of defense-related genes based on sequence similarity and gene ontologies. Genetic analysis following an independent selection experiment of lines derived from a cross between ‘Bk7’ and sweet sorghum ‘Mer81-4’ narrowed the resistance locus on chromosome 9 substantially, validating this QTL. As observed in other species, sorghum appears to have regions of clustered resistance genes. Further characterization of these regions will facilitate the development of novel germplasm with resistance to anthracnose and other diseases.

Concepts: DNA, Gene, Genetics, Biology, Chromosome, Cereal, Sorghum, Biofuels


Projections indicate an elevation of the atmospheric CO2 concentration ([CO2]) concomitantly with an intensification of drought for this century, increasing the challenges to food security. On the one hand, drought is a main environmental factor responsible for decreasing crop productivity and grain quality, especially when occurring during the grain-filling stage. On the other hand, elevated [CO2] is predicted to mitigate some of the negative effects of drought. Sorghum (Sorghum bicolor L. Moench) is a C4 grass that has important economical and nutritional values in many parts of the world. Although the impact of elevated [CO2] and drought in photosynthesis and sorghum growth has been well documented, the effects of the combination of these two environmental factors on plant metabolism have yet to be determined. To address this question, sorghum plants (cv. BRS 330) were grown and monitored at ambient (400 µmol.mol-1) or elevated [CO2] (800 µmol.mol-1) for 120 days, and submitted to drought during the grain-filling stage. Leaf photosynthesis, respiration, and stomatal conductance were measured at 90 and 120 days after planting, and plant organs (leaves, culm, roots, prop roots, and grains) were harvested. Finally, biomass and intracellular metabolites were assessed for each organ. As expected, elevated [CO2] reduced the stomatal conductance, which preserved soil moisture and plant fitness under drought. Interestingly, the whole-plant metabolism was adjusted and protein content in grains was improved by 60% in sorghum grown under elevated [CO2].

Concepts: Photosynthesis, Carbon dioxide, Metabolism, Cellular respiration, Poaceae, Cereal, Leaf, Sorghum


Stay-green sorghum plants exhibit greener leaves and stems during the grain-filling period under water-limited conditions compared with their senescent counterparts, resulting in increased grain yield, grain mass, and lodging resistance. Stay-green has been mapped to a number of key chromosomal regions, including Stg1, Stg2, Stg3, and Stg4, but the functions of these individual quantitative trait loci (QTLs) remain unclear. The objective of this study was to show how positive effects of Stg QTLs on grain yield under drought can be explained as emergent consequences of their effects on temporal and spatial water-use patterns that result from changes in leaf-area dynamics. A set of four Stg near-isogenic lines (NILs) and their recurrent parent were grown in a range of field and semicontrolled experiments in southeast Queensland, Australia. These studies showed that the four Stg QTLs regulate canopy size by: (1) reducing tillering via increased size of lower leaves, (2) constraining the size of the upper leaves; and (3) in some cases, decreasing the number of leaves per culm. In addition, they variously affect leaf anatomy and root growth. The multiple pathways by which Stg QTLs modulate canopy development can result in considerable developmental plasticity. The reduction in canopy size associated with Stg QTLs reduced pre-flowering water demand, thereby increasing water availability during grain filling and, ultimately, grain yield. The generic physiological mechanisms underlying the stay-green trait suggest that similar Stg QTLs could enhance post-anthesis drought adaptation in other major cereals such as maize, wheat, and rice.

Concepts: Photosynthesis, Poaceae, Quantitative trait locus, Cereal, Maize, Leaf, Rice, Sorghum