Discover the most talked about and latest scientific content & concepts.

Concept: Somatic hypermutation


APS1/APECED patients are defined by defects in the autoimmune regulator (AIRE) that mediates central T cell tolerance to many self-antigens. AIRE deficiency also affects B cell tolerance, but this is incompletely understood. Here we show that most APS1/APECED patients displayed B cell autoreactivity toward unique sets of approximately 100 self-proteins. Thereby, autoantibodies from 81 patients collectively detected many thousands of human proteins. The loss of B cell tolerance seemingly occurred during antibody affinity maturation, an obligatorily T cell-dependent step. Consistent with this, many APS1/APECED patients harbored extremely high-affinity, neutralizing autoantibodies, particularly against specific cytokines. Such antibodies were biologically active in vitro and in vivo, and those neutralizing type I interferons (IFNs) showed a striking inverse correlation with type I diabetes, not shown by other anti-cytokine antibodies. Thus, naturally occurring human autoantibodies may actively limit disease and be of therapeutic utility.

Concepts: Immune system, Antibody, Protein, Cytokine, Diabetes mellitus type 1, Immunology, Interferon, Somatic hypermutation


The processes of somatic hypermutation (SHM) and class switch recombination introduced by activation-induced cytosine deaminase (AICDA) at the Immunoglobulin (Ig) loci are key steps for creating a pool of diversified antibodies in germinal center B cells (GCBs). Unfortunately, AICDA can also accidentally introduce mutations at bystander loci, particularly within the 5' regulatory regions of proto-oncogenes relevant to diffuse large B cell lymphomas (DLBCL). Since current methods for genomewide sequencing such as Exon Capture and RNAseq only target mutations in coding regions, to date non-Ig promoter SHMs have been studied only in a handful genes. We designed a novel approach integrating bioinformatics tools with next generation sequencing technology to identify regulatory loci targeted by SHM genome-wide. We observed increased numbers of SHM associated sequence variant hotspots in lymphoma cells as compared to primary normal germinal center B cells. Many of these SHM hotspots map to genes that have not been reported before as mutated, including BACH2, BTG2, CXCR4, CIITA, EBF1, PIM2, and TCL1A, etc., all of which have potential roles in B cell survival, differentiation, and malignant transformation. In addition, using BCL6 and BACH2 as examples, we demonstrated that SHM sites identified in these 5' regulatory regions greatly altered their transcription activities in a reporter assay. Our approach provides a first cost-efficient, genome-wide method to identify regulatory mutations and non-Ig SHM hotspots.

Concepts: Immune system, Antibody, DNA, Protein, Cancer, B cell, Lymphoma, Somatic hypermutation


Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.

Concepts: AIDS, Immune system, Antibody, B cell, Antigen, Somatic hypermutation, Neutralization, Neutral


Remodeling of immunoglobulin genes by activation-induced deaminase (AID) is required for affinity maturation and class-switch recombination in mature B lymphocytes. In the immunoglobulin heavy chain locus, these processes are predominantly controlled by the 3' cis-regulatory region. We now show that this region is transcribed and undergoes AID-mediated mutation and recombination around phylogenetically conserved switchlike DNA repeats. Such recombination, which we term locus suicide recombination, deletes the whole constant region gene cluster and thus stops expression of the immunoglobulin of the B cell surface, which is critical for B cell survival. The frequency of this event is approaching that of class switching and makes it a potential regulator of B cell homeostasis.

Concepts: Immune system, DNA, Protein, Gene, Genetics, Organism, Chromosome, Somatic hypermutation


A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors.

Concepts: Immune system, Antibody, DNA, Immunology, Adaptive immune system, Antigen, Epitope, Somatic hypermutation


Somatic hypermutation and clonal selection lead to B cells expressing high-affinity antibodies. Here we show that somatic mutations not only play a critical role in antigen binding, they also affect the thermodynamic stability of the antibody molecule. Somatic mutations directly involved in antigen recognition by antibody 93F3, which binds a relatively small hapten, reduce the melting temperature compared with its germ-line precursor by up to 9 °C. The destabilizing effects of these mutations are compensated by additional somatic mutations located on surface loops distal to the antigen binding site. Similarly, somatic mutations enhance both the affinity and thermodynamic stability of antibody OKT3, which binds the large protein antigen CD3. Analysis of the crystal structures of 93F3 and OKT3 indicates that these somatic mutations modulate antibody stability primarily through the interface of the heavy and light chain variable domains. The historical view of antibody maturation has been that somatic hypermutation and subsequent clonal selection increase antigen-antibody specificity and binding energy. Our results suggest that this process also optimizes protein stability, and that many peripheral mutations that were considered to be neutral are required to offset deleterious effects of mutations that increase affinity. Thus, the immunological evolution of antibodies recapitulates on a much shorter timescale the natural evolution of enzymes in which function and thermodynamic stability are simultaneously enhanced through mutation and selection.

Concepts: Immune system, Antibody, DNA, Protein, Mutation, B cell, Adaptive immune system, Somatic hypermutation


OBJECTIVES/HYPOTHESIS: Immunoglobulin (Ig)G4-related disease is a systemic syndrome, characterized by sclerosing lesions that mainly affect the exocrine tissue. Although some patients with IgG4-related disease complain of nasal symptoms, there are few reports concerning the nasal manifestations of this disease. We investigated the clinical and pathological features of the nasal manifestations of IgG4-related disease. STUDY DESIGN: Retrospective review in a tertiary referral hospital. METHODS: Twenty-three consecutive patients with IgG4-related disease, six allergic rhinitis (AR) patients, and eight healthy subjects (HS) were evaluated. Nasal symptoms, local findings of the nasal cavity, and laboratory data were examined. Mucosal tissues from the inferior turbinate were obtained from all subjects before treatment. The level of IgG4-positive plasma cells and other infiltrating cells, and the number of nasal glands in the nasal subjects were compared among the three groups. RESULTS: Ten (43.4%) of 23 cases had some nasal symptoms, such as nasal obstruction and nasal crusting. Thirteen cases (56.5%) had numerous IgG4-positive plasma cell infiltration in the nasal mucosa. IgG4-positive plasma cells, CD3, and CD4 were significantly higher in the IgG4-related disease group than in the HS and AR groups, whereas the number of nasal glands in the IgG4-related disease group was significantly lower than in the HS and AR groups. CONCLUSIONS: The inflammatory lesions associated with IgG4-related disease exist on the nasal membrane. Thus, the nasal manifestations of IgG4-related disease were thought to be different from AR.

Concepts: Protein, Mucous membrane, Secretion, Allergy, Mucus, Nose, Somatic hypermutation, Tertiary referral hospital


Intestinal plasma cells predominantly produce immunoglobulin (Ig) A, however, their functional diversity remains poorly characterized. Here we show that murine intestinal IgA plasma cells can be newly classified into two populations on the basis of CD11b expression, which cannot be discriminated by currently known criteria such as general plasma cell markers, B cell origin and T cell dependence. CD11b(+) IgA(+) plasma cells require the lymphoid structure of Peyer’s patches, produce more IgA than CD11b(-) IgA(+) plasma cells, proliferate vigorously, and require microbial stimulation and IL-10 for their development and maintenance. These features allow CD11b(+) IgA(+) plasma cells to mediate early-phase antigen-specific intestinal IgA responses induced by oral immunization with protein antigen. These findings reveal the functional diversity of IgA(+) plasma cells in the murine intestine.

Concepts: Immune system, Protein, Gene, Bacteria, B cell, Adaptive immune system, Somatic hypermutation, Plasma cell


Understanding the natural evolution and structural changes involved in broadly neutralizing antibody (bnAb) development holds great promise for improving the design of prophylactic influenza vaccines. Here we report an haemagglutinin (HA) stem-directed bnAb, 3I14, isolated from human memory B cells, that utilizes a heavy chain encoded by the IGHV3-30 germline gene. MAb 3I14 binds and neutralizes groups 1 and 2 influenza A viruses and protects mice from lethal challenge. Analysis of VH and VL germline back-mutants reveals binding to H3 and H1 but not H5, which supports the critical role of somatic hypermutation in broadening the bnAb response. Moreover, a single VLD94N mutation improves the affinity of 3I14 to H5 by nearly 10-fold. These data provide evidence that memory B cell evolution can expand the HA subtype specificity. Our results further suggest that establishing an optimized memory B cell pool should be an aim of ‘universal’ influenza vaccine strategies.

Concepts: Immune system, Protein, Evolution, Vaccine, B cell, Influenza, Somatic hypermutation, Influenza vaccine


The high-mannose patch on HIV Env is a preferred target for broadly neutralizing antibodies (bnAbs), but to date, no vaccination regimen has elicited bnAbs against this region. Here, we present the development of a bnAb lineage targeting the high-mannose patch in an HIV-1 subtype-C-infected donor from sub-Saharan Africa. The Abs first acquired autologous neutralization, then gradually matured to achieve breadth. One Ab neutralized >47% of HIV-1 strains with only ∼11% somatic hypermutation and no insertions or deletions. By sequencing autologous env, we determined key residues that triggered the lineage and participated in Ab-Env coevolution. Next-generation sequencing of the Ab repertoire showed an early expansive diversification of the lineage followed by independent maturation of individual limbs, several of them developing notable breadth and potency. Overall, the findings are encouraging from a vaccine standpoint and suggest immunization strategies mimicking the evolution of the entire high-mannose patch and promoting maturation of multiple diverse Ab pathways.

Concepts: Immune system, Antibody, Africa, Vaccination, Adaptive immune system, Somatic hypermutation, Neutralization, Neutral