Discover the most talked about and latest scientific content & concepts.

Concept: Solar thermal energy


Recent advances in nanophotonic light trapping open up the new gateway to enhance the absorption of solar energy beyond the so called Yablonovitch Limit. It addresses the urgent needs in developing low cost thin-film solar photovoltaic technologies. However, current design strategy mainly relies on the parametric approach that is subject to the predefined topological design concepts based on physical intuition. Incapable of dealing with the topological variation severely constrains the design of optimal light trapping structure. Inspired by natural evolution process, here we report a design framework driven by topology optimization based on genetic algorithms to achieve a highly efficient light trapping structure. It has been demonstrated that the optimal light trapping structures obtained in this study exhibit more than 3-fold increase over the Yablonovitch Limit with the broadband absorption efficiency of 48.1%, beyond the reach of intuitive designs.

Concepts: Evolution, Energy, Topology, Solar cell, Photovoltaics, Design, Solar energy, Solar thermal energy


Decisions determining the use of land for energy are of exigent concern as land scarcity, the need for ecosystem services, and demands for energy generation have concomitantly increased globally. Utility-scale solar energy (USSE) [i.e., ≥1 megawatt (MW)] development requires large quantities of space and land; however, studies quantifying the effect of USSE on land cover change and protected areas are limited. We assessed siting impacts of >160 USSE installations by technology type [photovoltaic (PV) vs. concentrating solar power (CSP)], area (in square kilometers), and capacity (in MW) within the global solar hot spot of the state of California (United States). Additionally, we used the Carnegie Energy and Environmental Compatibility model, a multiple criteria model, to quantify each installation according to environmental and technical compatibility. Last, we evaluated installations according to their proximity to protected areas, including inventoried roadless areas, endangered and threatened species habitat, and federally protected areas. We found the plurality of USSE (6,995 MW) in California is sited in shrublands and scrublands, comprising 375 km(2) of land cover change. Twenty-eight percent of USSE installations are located in croplands and pastures, comprising 155 km(2) of change. Less than 15% of USSE installations are sited in “Compatible” areas. The majority of “Incompatible” USSE power plants are sited far from existing transmission infrastructure, and all USSE installations average at most 7 and 5 km from protected areas, for PV and CSP, respectively. Where energy, food, and conservation goals intersect, environmental compatibility can be achieved when resource opportunities, constraints, and trade-offs are integrated into siting decisions.

Concepts: Sun, Solar cell, Photovoltaics, Solar energy, Solar power, Nuclear power, Solar thermal energy, Concentrating solar power


Quantum dot nanoscale semiconductor heterostructures (QDHs) are a class of materials potentially useful for integration into solar energy conversion devices. However, realizing the potential of these heterostructured systems requires the ability to identify and synthesize heterostructures with suitably designed materials, controlled size and morphology of each component, and structural control over their shared interface. In this review, we will present the case for the utility and advantages of chemically synthesized QDHs for solar energy conversion, beginning with an overview of various methods of heterostructured material synthesis and a survey of heretofore reported materials systems. The fundamental charge transfer properties of the resulting materials combinations and their basic design principles will be outlined. Finally, we will discuss representative solar photovoltaic and photoelectrochemical devices employing QDHs (including quantum dot sensitized solar cells, or QDSSCs) and examine how QDH synthesis and design impacts their performance.

Concepts: Energy, Sun, Solar cell, Photovoltaics, Solar energy, Solar power, Photovoltaic array, Solar thermal energy


We report an efficient approach to the synthesis of AgSbS2 nanocrystals (NCs) by colloidal chemistry. The size of the AgSbS2 NCs can be tuned from 5.3 to 58.3 nm with narrow size distributions by selection of appropriate precursors and fine control of the experimental conditions. Over 15 g of high-quality AgSbS2 NCs can be obtained from one single reaction, indicative of the up-scalability of the present synthesis. The resulting NCs display strong absorptions in the visible-to-NIR range and exceptional air stability. The photoelectrochemical measurements indicate that, although the pristine AgSbS2 NC electrodes generate a cathodic photocurrent with a relatively small photocurrent density and poor stability, both of them can be significantly improved subject to CdS surface modification, showing promise in solar energy conversion applications.

Concepts: Energy, Chemical reaction, Sun, Photovoltaics, Energy conversion, Solar energy, Solar power, Solar thermal energy


It is possible to harvest energy from Earth’s thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

Concepts: Energy, Electromagnetic radiation, Sun, Photovoltaics, Renewable energy, Black body, Solar energy, Solar thermal energy


We introduce a paradigm-“hydricity”-that involves the coproduction of hydrogen and electricity from solar thermal energy and their judicious use to enable a sustainable economy. We identify and implement synergistic integrations while improving each of the two individual processes. When the proposed integrated process is operated in a standalone, solely power production mode, the resulting solar water power cycle can generate electricity with unprecedented efficiencies of 40-46%. Similarly, in standalone hydrogen mode, pressurized hydrogen is produced at efficiencies approaching ∼50%. In the coproduction mode, the coproduced hydrogen is stored for uninterrupted solar power production. When sunlight is unavailable, we envision that the stored hydrogen is used in a “turbine”-based hydrogen water power (H2WP) cycle with the calculated hydrogen-to-electricity efficiency of 65-70%, which is comparable to the fuel cell efficiencies. The H2WP cycle uses much of the same equipment as the solar water power cycle, reducing capital outlays. The overall sun-to-electricity efficiency of the hydricity process, averaged over a 24-h cycle, is shown to approach ∼35%, which is nearly the efficiency attained by using the best multijunction photovoltaic cells along with batteries. In comparison, our proposed process has the following advantages: (i) It stores energy thermochemically with a two- to threefold higher density, (ii) coproduced hydrogen has alternate uses in transportation/chemical/petrochemical industries, and (iii) unlike batteries, the stored energy does not discharge over time and the storage medium does not degrade with repeated uses.

Concepts: Energy, Solar cell, Photovoltaics, Energy conversion, Renewable energy, Solar energy, Solar thermal energy, PS10 solar power tower


Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

Concepts: Sun, Science, Research, Photovoltaics, Technology, Solar energy, Solar thermal energy, Applied research


Solution-processed organic photovoltaics (OPV) offer the attractive prospect of low-cost, light-weight and environmentally benign solar energy production. The highest efficiency OPV at present use low-bandgap donor polymers, many of which suffer from problems with stability and synthetic scalability. They also rely on fullerene-based acceptors, which themselves have issues with cost, stability and limited spectral absorption. Here we present a new non-fullerene acceptor that has been specifically designed to give improved performance alongside the wide bandgap donor poly(3-hexylthiophene), a polymer with significantly better prospects for commercial OPV due to its relative scalability and stability. Thanks to the well-matched optoelectronic and morphological properties of these materials, efficiencies of 6.4% are achieved which is the highest reported for fullerene-free P3HT devices. In addition, dramatically improved air stability is demonstrated relative to other high-efficiency OPV, showing the excellent potential of this new material combination for future technological applications.

Concepts: Solar cell, Photovoltaics, Organic solar cell, Photodiode, Solar energy, Solar power, Solar tracker, Solar thermal energy


One key challenge in the field of exploitation of solar energy is to store the energy and make it available on demand. One possibility is to use photochromic molecules that undergo light-induced isomerization to metastable isomers. Here we present efforts to develop solar thermal energy storage systems based on the dihydroazulene (DHA)/vinylheptafulvene (VHF) photo/thermoswitch. New DHA derivatives with one electron-withdrawing cyano group at position 1 and one or two phenyl substituents in the five-membered ring were prepared by using different synthetic routes. In particular, a diastereoselective reductive removal of one cyano group from DHAs incorporating two cyano groups at position 1 turned out to be most effective. Quantum chemical calculations reveal that the structural modifications provide two benefits relative to DHAs with two cyano groups at position 1: 1) The DHA-VHF energy difference is increased (i.e., higher energy capacity of metastable VHF isomer); 2) the Gibbs free energy of activation is increased for the energy-releasing VHF to DHA back-reaction. In fact, experimentally, these new derivatives were so reluctant to undergo the back-reaction at room temperature that they practically behaved as DHA to VHF one-way switches. Although lifetimes of years are at first attractive, which offers the ultimate control of energy release, for a real device it must of course be possible to trigger the back-reaction, which calls for further iterations in the future.

Concepts: Energy, Chemistry, Thermodynamics, Entropy, Gibbs free energy, Solar energy, Energy storage, Solar thermal energy


The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display.

Concepts: Fluid dynamics, Heat, Photovoltaics, Bluetooth, Solar energy, Solar thermal energy, Concentrating solar power, Solar thermal