SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Sol-gel

179

Globally ordered colloidal crystal lattices have broad utility in a wide range of optical and catalytic devices, for example, as photonic bandgap materials. However, the self-assembly of stereospecific structures is often confounded by polymorphism. Small free energy differences often characterize ensembles of different structures, making it difficult to produce a single morphology at will. Current techniques to handle this problem adopt one of two approaches: that of the “top-down,” or “bottom-up” methodology, whereby structures are engineered starting from the largest or smallest relevant length scales, respectively. However, recently a third approach for directing high fidelity assembly of colloidal crystals has been suggested which relies on the introduction of polymer co-solutes into the crystal phase [N. A. Mahynski, A. Z. Panagiotopoulos, D. Meng, S. K. Kumar, Nat. Commun., 2014, 5, 4472]. By tuning the polymer’s morphology to interact uniquely with the void symmetry of a single desired crystal, the entropy loss associated with polymer confinement has been shown to strongly bias the formation of that phase. However, previously this approach has only been demonstrated in the limiting case of close-packed crystals. Here we show how this approach may be generalized and extended to complex open crystals, illustrating the utility of this “structure-directing agent” paradigm in engineering the nanoscale structure of ordered colloidal materials. The high degree of transferability of this paradigm’s basic principles between relatively simple crystals and more complex ones suggests this represents a valuable addition to presently known self-assembly techniques.

Concepts: Crystal, Crystal structure, Condensed matter physics, Sol-gel, Materials science, Colloidal crystal, Photonic crystal, Crystals

168

We investigated flexible liposomes as a potential oral drug delivery system. However, enhanced membrane fluidity and structural deformability may necessitate liposomal surface modification when facing the harsh environment of the gastrointestinal tract. In the present study, silica-coated flexible liposomes loaded with curcumin (CUR-SLs) having poor water solubility as a model drug were prepared by a thin-film method with homogenization, followed by the formation of a silica shell by the sol-gel process. We systematically investigated the physical properties, drug release behavior, pharmacodynamics, and bioavailability of CUR-SLs. CUR-SLs had a mean diameter of 157 nm and a polydispersity index of 0.14, while the apparent entrapment efficiency was 90.62%. Compared with curcumin-loaded flexible liposomes (CUR-FLs) without silica-coatings, CUR-SLs had significantly higher stability against artificial gastric fluid and showed more sustained drug release in artificial intestinal fluid as determined by in vitro release assays. The bioavailability of CUR-SLs and CUR-FLs was 7.76- and 2.35-fold higher, respectively, than that of curcumin suspensions. Silica coating markedly improved the stability of flexible liposomes, and CUR-SLs exhibited a 3.31-fold increase in bioavailability compared with CUR-FLs, indicating that silica-coated flexible liposomes may be employed as a potential carrier to deliver drugs with poor water solubility via the oral route with improved bioavailability.

Concepts: Pharmacology, Sol-gel, Drugs, Membrane biology, Medicinal chemistry, Pharmacokinetics, Biopharmaceutics Classification System, Digestion

167

Although amorphous silica is used in food products, cosmetics and paints and as vector for drug delivery, data on its potential health hazard are limited. The aim of this study was to investigate the cytotoxic and genotoxic potential of silica particles of different sizes (250 and 500nm) and structures (dense and mesoporous). Dense silica (DS) spheres were prepared by sol-gel synthesis, mesoporous silica particles (MCM-41) were prepared using hexadecyltrimethyl ammonium bromide as a structure-directing agent and tetraethylorthosilicate as silica source. Particles were accurately characterised by dynamic light scattering, nitrogen adsorption, X-ray diffraction and field emission scanning electron microscopy. Murine macrophages (RAW264.7) and human epithelial lung (A549) cell lines were selected for investigation. Genotoxicity was evaluated by Comet assay and micronucleus test. Cytotoxicity was tested by the trypan blue method. Cells were treated with 0, 5, 10, 20, 40 and 80 µg/cm(2) of different silica powders for 4 and 24 h. The intracellular localisation of silica was investigated by transmission electron microscopy. Amorphous particles penetrated into the cells, being compartmentalised within endocytic vacuoles. DS and MCM-41 particles induced cytotoxic and genotoxic effects in A549 and RAW264.7 although to different extent in the two cell lines. A549 were resistant in terms of cell viability, but showed a generalised induction of DNA strand breaks. RAW264.7 were susceptible to amorphous silica exposure, exhibiting both cytotoxic and genotoxic responses as DNA strand breaks and chromosomal alterations. The cytotoxic response of RAW264.7 was particularly relevant after MCM-41 exposure. The genotoxicity of amorphous silica highlights the need for a proper assessment of its potential hazard for human health.

Concepts: DNA, Electron, Cell, Human, Chromosome, Sol-gel, Scanning electron microscope, Silicon dioxide

150

Carbendazim (MBC) (methyl-2-benzimidazole carbamate) and tebuconazole (TBZ) ((RS)-1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol) are widely used in agriculture for the prevention and control of fungal diseases. Solid lipid nanoparticles and polymeric nanocapsules are carrier systems that offer advantages including changes in the release profiles of bioactive compounds and their transfer to the site of action, reduced losses due to leaching or degradation, and decreased toxicity in the environment and humans. The objective of this study was to prepare these two types of nanoparticle as carrier systems for a combination of TBZ and MBC, and then investigate the release profiles of the fungicides as well as the stabilities and cytotoxicities of the formulations. Both nanoparticle systems presented high association efficiency (>99%), indicating good interaction between the fungicides and the nanoparticles. The release profiles of MBC and TBZ were modified when the compounds were loaded in the nanoparticles, and cytotoxicity assays showed that encapsulation of the fungicides decreased their toxicity. These fungicide systems offer new options for the treatment and prevention of fungal diseases in plants.

Concepts: Agriculture, Nanotechnology, Sol-gel, Cytotoxicity, Sulfur, Toxicity, Mycology, Fungicides

39

Nanolasers hold promise for applications including integrated photonics, on-chip optical interconnects and optical sensing. Key to the realization of current cavity designs is the use of nanomaterials combining high gain with high radiative efficiency. Until now, efforts to enhance the performance of semiconductor nanomaterials have focused on reducing the rate of non-radiative recombination through improvements to material quality and complex passivation schemes. Here we employ controlled impurity doping to increase the rate of radiative recombination. This unique approach enables us to improve the radiative efficiency of unpassivated GaAs nanowires by a factor of several hundred times while also increasing differential gain and reducing the transparency carrier density. In this way, we demonstrate lasing from a nanomaterial that combines high radiative efficiency with a picosecond carrier lifetime ready for high speed applications.

Concepts: Laser, Carbon, Nanomaterials, Sol-gel, Semiconductor, Silicon, Materials science, Ceramic engineering

35

The outstanding excitonic properties, including photoluminescence quantum yield (ηPL), of individual, quantum-confined semiconductor nanoparticles are often significantly quenched upon aggregation, representing the main obstacle toward scalable photonic devices. We report aggregation-induced emission phenomena in lamellar solids containing layer-controlled colloidal quantum wells (QWs) of hybrid organic-inorganic lead bromide perovskites, resulting in anomalously high solid-state ηPL of up to 94%. Upon forming the QW solids, we observe an inverse correlation between exciton lifetime and ηPL, distinct from that in typical quantum dot solid systems. Our multiscale theoretical analysis reveals that, in a lamellar solid, the collective motion of the surface organic cations is more restricted to orient along the [100] direction, thereby inducing a more direct bandgap that facilitates radiative recombination. Using the QW solids, we demonstrate ultrapure green emission by completely downconverting a blue gallium nitride light-emitting diode at room temperature, with a luminous efficacy higher than 90 lumen W-1 at 5000 cd m-2, which has never been reached in any nanomaterial assemblies by far.

Concepts: Condensed matter physics, Quantum dot, Nanomaterials, Sol-gel, Gallium arsenide, Solid, Solar cell, Light-emitting diode

35

While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of [Formula: see text] (10-100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, [Formula: see text] (1-10 μm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young’s modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material’s fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers.

Concepts: Sol-gel, Liquid, Materials science, Differential scanning calorimetry, Glass, Glass transition, Plasticizer, Physics of glass

34

Questions about how to regulate nano-enhanced products regularly arise as researchers determine possible nanoparticle transformation(s). Focusing concern on the incorporation and subsequent release of nano-Ag in the fabrics often overshadows the fact that many “conventional silver” antimicrobials such as ionic silver, AgCl, metallic Ag and other forms will also form different species of silver. In this study we used a laboratory washing machine to simulate the household laundering of a number of textiles prepared with known conventional Ag or nano-Ag treatments and a commercially available fabric incorporating yarns coated with bulk metallic Ag. Serial filtration allowed for quantification of total Ag released in various size fractions (> 0.45 µm, < 0.45 µm, < 0.1 µm and < 10 kDa) while characterization of particles with TEM/EDX provided insight on Ag transformation mechanisms. Most conventional Ag-additives yielded more total Ag and more nano-particulate sized Ag in washing liquid than fabrics that used nano-Ag treatments. Incorporating the nanosilver into the fiber (opposed to surface treatments) yielded less total Ag during fabric washing. A variety of metallic Ag, AgCl, and Ag/S particles were observed in washing solution by TEM/EDX to various extents depending on the initial Ag speciation in the fabrics. Very similar particles were also observed when dissolved ionic Ag was added directly into the washing liquid. Based on the present study, we can state that all silver-treated textiles, regardless if the treatment is "conventional" or "nano", can be a source of silver nanoparticles in washing solution when laundering fabrics. Indeed, in this study we observed that textiles treated with "conventional" silver have equal or greater propensity to form nano-silver particles during washing conditions than those treated with "nano" silver. This fact needs to be strongly considered when addressing the risks of nano-silver and emphasizes that regulatory assessment of nanosilver warrants a similar approach to conventional silver.

Concepts: Nanoparticle, Nanotechnology, Nanomaterials, Sol-gel, Colloid, Silver, Textile, Silver Nano

32

A method to encapsulate DNA in heat-resistant and inert magnetic particles was developed. An inexpensive synthesis technique based on co-precipitation was utilized to produce Fe2O3 nanoparticles, which were further functionalized with ammonium groups. DNA was adsorbed on this magnetic support and the DNA/magnet nanocluster was surface coated with a dense silica layer by sol-gel chemistry. The materials were further surface modified with hexyltrimethoxysilane to achieve particle dispersibility in hydrophobic liquids. The hydrodynamic particle sizes were evaluated by analytical disc-centrifugation and the magnetic properties were investigated by vibrating sample magnetometry. The obtained nanoengineered encapsulates showed good dispersion abilities in various non-aqueous fluids and did not affect the optical properties of the hydrophobic dispersant when present at concentrations lower than 1000 µg/L. Upon magnetic separation and particle dissolution, the DNA could be recovered unharmed and was analyzed by quantitative real-time PCR and Sanger sequencing. DNA encapsulated within the magnetic particles was stable for 2 years in decalin at room temperature and the stability was further tested at elevated temperatures. The new magnetic DNA/silica encapsulates were utilized to developed a low-cost platform for the tracing/tagging of oils and oil derived products, requiring 1 µg/L = 1 ppb levels of the taggant and allowing quantification of taggant concentration on a logarithmic scale. The procedure was tested for the barcoding of a fuel (gasoline), a cosmetic oil (bergamot oil), and a food grade oil (extra virgin olive oil), being able to verify the authenticity of the products.

Concepts: Polymerase chain reaction, Nanoparticle, Concentration, Magnetism, Sol-gel, Colloid, Liquid, Olive oil

29

Bioactive glasses are reported to be able to stimulate more bone regeneration than other bioactive ceramics but they lag behind other bioactive ceramics in terms of commercial success. Bioactive glass has not yet reached its potential but research activity is growing. This paper reviews the current state of the art, starting with current products and moving onto recent developments. Larry Hench’s 45S5 Bioglass® was the first artificial material that was found to form a chemical bond with bone, launching the field of bioactive ceramics. In vivo studies have shown that bioactive glasses bond with bone more rapidly than other bioceramics, and in vitro studies indicate that their osteogenic properties are due to their dissolution products stimulating osteoprogenitor cells at the genetic level. However, calcium phosphates such as tricalcium phosphate and synthetic hydroxyapatite are more widely used in the clinic. Some of the reasons are commercial, but others are due to the scientific limitations of the original Bioglass 45S5. An example is that it is difficult to produce porous bioactive glass templates (scaffolds) for bone regeneration from Bioglass 45S5 because it crystallizes during sintering. Recently, this has been overcome by understanding how the glass composition can be tailored to prevent crystallization. The sintering problems can also be avoided by synthesizing sol-gel glass, where the silica network is assembled at room temperature. Process developments in foaming, solid freeform fabrication and nanofibre spinning have now allowed the production of porous bioactive glass scaffolds from both melt- and sol-gel-derived glasses. An ideal scaffold for bone regeneration would share load with bone. Bioceramics cannot do this when the bone defect is subjected to cyclic loads, as they are brittle. To overcome this, bioactive glass polymer hybrids are being synthesized that have the potential to be tough, with congruent degradation of the bioactive inorganic and the polymer components. Key to this is creating nanoscale interpenetrating networks, the organic and inorganic components of which have covalent coupling between them, which involves careful control of the chemistry of the sol-gel process. Bioactive nanoparticles can also now be synthesized and their fate tracked as they are internalized in cells. This paper reviews the main developments in the field of bioactive glass and its variants, covering the importance of control of hierarchical structure, synthesis, processing and cellular response in the quest for new regenerative synthetic bone grafts. The paper takes the reader from Hench’s Bioglass 45S5 to new hybrid materials that have tailorable mechanical properties and degradation rates.

Concepts: Crystal, In vivo, Sol-gel, Solid, In vitro, Glass, Ceramic engineering, Bioactive glass