Discover the most talked about and latest scientific content & concepts.

Concept: Soil


It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.

Concepts: Agriculture, Soil, Charcoal, Organic farming, Humus, Input, Crop rotation, Subsoil


The large volumes of sequencing data required to sample deeply the microbial communities of complex environments pose new challenges to sequence analysis. De novo metagenomic assembly effectively reduces the total amount of data to be analyzed but requires substantial computational resources. We combine two preassembly filtering approaches-digital normalization and partitioning-to generate previously intractable large metagenome assemblies. Using a human-gut mock community dataset, we demonstrate that these methods result in assemblies nearly identical to assemblies from unprocessed data. We then assemble two large soil metagenomes totaling 398 billion bp (equivalent to 88,000 Escherichia coli genomes) from matched Iowa corn and native prairie soils. The resulting assembled contigs could be used to identify molecular interactions and reaction networks of known metabolic pathways using the Kyoto Encyclopedia of Genes and Genomes Orthology database. Nonetheless, more than 60% of predicted proteins in assemblies could not be annotated against known databases. Many of these unknown proteins were abundant in both corn and prairie soils, highlighting the benefits of assembly for the discovery and characterization of novelty in soil biodiversity. Moreover, 80% of the sequencing data could not be assembled because of low coverage, suggesting that considerably more sequencing data are needed to characterize the functional content of soil.

Concepts: Gene, Archaea, Bacteria, Biodiversity, Metabolism, Escherichia coli, Soil, Assembly language


Formicidae) is increasingly well-understood due to recent phylogenetic analyses, along with estimates of divergence times and diversification rates. Yet, leading hypotheses regarding the ancestral habitat of ants conflict with new findings that early ant lineages are cryptic and subterranean. Where the ants evolved, in respect to habitat, and how habitat shifts took place over time have not been formally tested. Here, we reconstruct the habitat transitions of crown-group ants through time, focusing on where they nest and forage (in the canopy, litter, or soil). Based on ancestral character reconstructions, we show that in contrast to the current consensus based on verbal arguments that ants evolved in tropical leaf litter, the soil is supported as the ancestral stratum of all ants. We also find subsequent movements up into the litter and, in some cases, into the canopy. Given the global importance of ants, because of their diversity, ecological influence and status as the most successful eusocial lineage on Earth, understanding the early evolution of this lineage provides insight into the factors that made this group so successful today.

Concepts: Biodiversity, Evolution, Ecology, Soil, Bee, Ant, Fossil, E. O. Wilson


Mongolian Scots pine (Pinus sylvestris var. mongolica) is one of the principal tree species in the network of Three-North Shelterbelt for windbreak and sand stabilisation in China. The functions of shelterbelts are highly correlated with the architecture and eco-physiological processes of individual tree. Thus, model-assisted analysis of canopy architecture and function dynamic in Mongolian Scots pine is of value for better understanding its role and behaviour within shelterbelt ecosystems in these arid and semiarid regions. We present here a single-tree functional and structural model, derived from the GreenLab model, which is adapted for young Mongolian Scots pines by incorporation of plant biomass production, allocation, allometric rules and soil water dynamics. The model is calibrated and validated based on experimental measurements taken on Mongolian Scots pines in 2007 and 2006 under local meteorological conditions. Measurements include plant biomass, topology and geometry, as well as soil attributes and standard meteorological data. After calibration, the model allows reconstruction of three-dimensional (3D) canopy architecture and biomass dynamics for trees from one- to six-year-old at the same site using meteorological data for the six years from 2001 to 2006. Sensitivity analysis indicates that rainfall variation has more influence on biomass increment than on architecture, and the internode and needle compartments and the aboveground biomass respond linearly to increases in precipitation. Sensitivity analysis also shows that the balance between internode and needle growth varies only slightly within the range of precipitations considered here. The model is expected to be used to investigate the growth of Mongolian Scots pines in other regions with different soils and climates.

Concepts: Precipitation, Soil, Tree, Scots Pine, Pine, Pinus classification, Biomass, Pinus


Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ(13)C values where leaves collected close to the forest floor would have lower δ(13)C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ(13)C and δ(15)N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ(13)C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ(13)C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ(15)N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation biology of forest ecosystems in Madagascar.

Concepts: Plant, Ecology, Soil, Ecosystem, Biome, Oak, Deciduous, Tropical and subtropical dry broadleaf forests


Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood.

Concepts: Soil, Fusarium oxysporum


Arid grassland ecosystems have significant interannual variation in carbon exchange; however, it is unclear how environmental factors influence carbon exchange in different hydrological years. In this study, the eddy covariance technique was used to investigate the seasonal and interannual variability of CO(2) flux over a temperate desert steppe in Inner Mongolia, China from 2008 to 2010. The amounts and times of precipitation varied significantly throughout the study period. The precipitation in 2009 (186.4 mm) was close to the long-term average (183.9±47.6 mm), while the precipitation in 2008 (136.3 mm) and 2010 (141.3 mm) was approximately a quarter below the long-term average. The temperate desert steppe showed carbon neutrality for atmospheric CO(2) throughout the study period, with a net ecosystem carbon dioxide exchange (NEE) of -7.2, -22.9, and 26.0 g C m(-2) yr(-1) in 2008, 2009, and 2010, not significantly different from zero. The ecosystem gained more carbon in 2009 compared to other two relatively dry years, while there was significant difference in carbon uptake between 2008 and 2010, although both years recorded similar annual precipitation. The results suggest that summer precipitation is a key factor determining annual NEE. The apparent quantum yield and saturation value of NEE (NEE(sat)) and the temperature sensitivity coefficient of ecosystem respiration (R(eco)) exhibited significant variations. The values of NEE(sat) were -2.6, -2.9, and -1.4 µmol CO(2) m(-2) s(-1) in 2008, 2009, and 2010, respectively. Drought suppressed both the gross primary production (GPP) and R(eco), and the drought sensitivity of GPP was greater than that of R(eco). The soil water content sensitivity of GPP was high during the dry year of 2008 with limited soil moisture availability. Our results suggest the carbon balance of this temperate desert steppe was not only sensitive to total annual precipitation, but also to its seasonal distribution.

Concepts: Carbon dioxide, Water, Earth, Precipitation, Climate, Soil, Hydrology, Drought


In order to reduce soil erosion and desertification, the Sloping Land Conversion Program has been conducted in China for more than 15 years, and large areas of farmland have been converted to forest and grassland. However, this large-scale vegetation-restoration project has faced some key problems (e.g. soil drying) that have limited the successful development of the current ecological-recovery policy. Therefore, it is necessary to know about the land use, vegetation, and soil, and their inter-relationships in order to identify the suitability of vegetation restoration. This study was conducted at the watershed level in the ecologically vulnerable region of the Loess Plateau, to evaluate the land suitability using the analytic hierarchy process (AHP). The results showed that (1) the area unsuitable for crops accounted for 73.3% of the watershed, and the main factors restricting cropland development were soil physical properties and soil nutrients; (2) the area suitable for grassland was about 86.7% of the watershed, with the remaining 13.3% being unsuitable; (3) an area of 3.95 km(2), accounting for 66.7% of the watershed, was unsuitable for forest. Overall, the grassland was found to be the most suitable land-use to support the aims of the Sloping Land Conversion Program in the Liudaogou watershed. Under the constraints of soil water shortage and nutrient deficits, crops and forests were considered to be inappropriate land uses in the study area, especially on sloping land. When selecting species for re-vegetation, non-native grass species with high water requirements should be avoided so as to guarantee the sustainable development of grassland and effective ecological functioning. Our study provides local land managers and farmers with valuable information about the inappropriateness of growing trees in the study area along with some information on species selection for planting in the semi-arid area of the Loess Plateau.

Concepts: Nutrient, Soil, Erosion, Analytic Hierarchy Process, Analytical hierarchy, Land use, Geomorphology, Deforestation


Several reviews have analyzed the factors that affect the change in soil organic C (SOC) when forest is converted to agricultural land; however, the effects of forest type and cultivation stage on these changes have generally been overlooked. We collated observations from 453 paired or chronosequential sites where forests have been converted to agricultural land and then assessed the effects of forest type, cultivation stage, climate factors, and soil properties on the change in the SOC stock and the SOC turnover rate constant (k). The percent decrease in SOC stocks and the turnover rate constants both varied significantly according to forest type and cultivation stage. The largest decrease in SOC stocks was observed in temperate regions (52% decrease), followed by tropical regions (41% decrease) and boreal regions (31% decrease). Climate and soil factors affected the decrease in SOC stocks. The SOC turnover rate constant after the conversion of forests to agricultural land increased with the mean annual precipitation and temperature. To our knowledge, this is the first time that original forest type was considered when evaluating changes in SOC after being converted to agricultural land. The differences between forest types should be considered when calculating global changes in SOC stocks.

Concepts: Precipitation, Climate, Soil, Affect, Ecosystem, Forest, Köppen climate classification, Arable land


Increased nitrogen (N) deposition is common worldwide. Questions of where, how, and if reactive N-input influences soil carbon © sequestration in terrestrial ecosystems are of great concern. To explore the potential for soil C sequestration in steppe region under N and phosphorus (P) addition, we conducted a field experiment between 2006 and 2012 in the temperate grasslands of northern China. The experiment examined 6 levels of N (0-56 g N m(-2) yr(-1)), 6 levels of P (0-12.4 g P m(-2) yr(-1)), and a control scenario. Our results showed that addition of both N and P enhanced soil total C storage in grasslands due to significant increases of C input from litter and roots. Compared with control plots, soil organic carbon (SOC) in the 0-100 cm soil layer varied quadratically, from 156.8 to 1352.9 g C m(-2) with N addition gradient (R(2) = 0.99, P < 0.001); and logarithmically, from 293.6 to 788.6 g C m(-2) with P addition gradient (R(2) = 0.56, P = 0.087). Soil inorganic carbon (SIC) decreased quadratically with N addition. The net C sequestration on grassland (including plant, roots, SIC, and SOC) increased linearly from -128.6 to 729.0 g C m(-2) under N addition (R(2) = 0.72, P = 0.023); and increased logarithmically, from 248.5 to 698 g C m(-2)under P addition (R(2) = 0.82, P = 0.014). Our study implies that N addition has complex effects on soil carbon dynamics, and future studies of soil C sequestration on grasslands should include evaluations of both SOC and SIC under various scenarios.

Concepts: Carbon dioxide, Soil, Carbon, Geology, Grassland, Steppe, Savanna, Temperate grasslands, savannas, and shrublands