Discover the most talked about and latest scientific content & concepts.

Concept: Soft matter


Inspired by natural muscle, a key challenge in soft robotics is to develop self-contained electrically driven soft actuators with high strain density. Various characteristics of existing technologies, such as the high voltages required to trigger electroactive polymers ( > 1KV), low strain ( < 10%) of shape memory alloys and the need for external compressors and pressure-regulating components for hydraulic or pneumatic fluidicelastomer actuators, limit their practicality for untethered applications. Here we show a single self-contained soft robust composite material that combines the elastic properties of a polymeric matrix and the extreme volume change accompanying liquid-vapor transition. The material combines a high strain (up to 900%) and correspondingly high stress (up to 1.3 MPa) with low density (0.84 g cm(-3)). Along with its extremely low cost (about 3 cent per gram), simplicity of fabrication and environment-friendliness, these properties could enable new kinds of electrically driven entirely soft robots.The development of self-contained electrically driven soft actuators with high strain density is difficult. Here the authors show a single self-contained soft robust composite material that combines the elastic properties of a polymeric matrix and the extreme volume change accompanying liquid vapour transition.

Concepts: Density, Water, Polymer, Soft matter, Metallurgy, Pseudoelasticity, Polymers, Electroactive polymers


The salient feature of liquid crystal elastomers and networks is strong coupling between orientational order and mechanical strain. Orientational order can be changed by a wide variety of stimuli, including the presence of moisture. Changes in the orientation of constituents give rise to stresses and strains, which result in changes in sample shape. We have utilized this effect to build soft cellulose-based motor driven by humidity. The motor consists of a circular loop of cellulose film, which passes over two wheels. When humid air is present near one of the wheels on one side of the film, with drier air elsewhere, rotation of the wheels results. As the wheels rotate, the humid film dries. The motor runs so long as the difference in humidity is maintained. Our cellulose liquid crystal motor thus extracts mechanical work from a difference in humidity.

Concepts: Crystal, Soft matter, Orientation, Humidity, Liquid crystal, Rigid body, Evaporation, Building insulation


Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. Although this issue was called into attention decades ago, no actual solution was found. To bypass this critical outstanding problem, two manufacturers introduced some low-calorie fats to substitute for cocoa butter. Somehow, their products are not allowed in most countries. Here we show that this issue is deeply related to the basic science of soft matter, especially to the viscosity of liquid suspension and maximally random jammed (MRJ) density. When the concentration of cocoa solid is high, close to the MRJ density, removing a small amount of fat will jam the chocolate flow. Applying unconventional electrorheology to liquid chocolate with applied field in the flow direction, we aggregate the cocoa particles into prolate spheroids in micrometers. This microstructure change breaks the rotational symmetry, reduces liquid chocolate’s viscosity along the flow direction, and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are expecting a new class of healthier and tastier chocolate soon.

Concepts: Nutrition, Liquid, Soft matter, Fluid, Rotational symmetry, Chocolate, Cocoa butter, Cocoa solids


Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the “Cheerios effect.” The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

Concepts: Scientific method, Colloid, Force, Solid, Liquid, Surface tension, Soft matter, Stress


Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

Concepts: Electron, Chemical bond, Polymer, Polymer chemistry, Monomer, Soft matter, Polymerization, Delocalized electron


In soft condensed matter physics, effective interactions often emerge due to the spatial confinement of fluctuating fields. For instance, microscopic particles dissolved in a binary liquid mixture are subject to critical Casimir forces whenever their surfaces confine the thermal fluctuations of the order parameter of the solvent close to its critical demixing point. These forces are theoretically predicted to be nonadditive on the scale set by the bulk correlation length of the fluctuations. Here we provide direct experimental evidence of this fact by reporting the measurement of the associated many-body forces. We consider three colloidal particles in optical traps and observe that the critical Casimir force exerted on one of them by the other two differs from the sum of the forces they exert separately. This three-body effect depends sensitively on the distance from the critical point and on the chemical functionalisation of the colloid surfaces.

Concepts: Quantum mechanics, Physics, Condensed matter physics, Chemistry, Colloid, Force, Phase, Soft matter


A liquid surface established by standing waves is used as a dynamically reconfigurable template to assemble microscale materials into ordered, symmetric structures in a scalable and parallel manner. We illustrate broad applicability of this technology by assembling diverse materials from soft matter, rigid bodies, individual cells, cell spheroids and cell-seeded microcarrier beads.

Concepts: Colloid, Wave, Soft matter, Cellular component, Assembly language, Liquid crystal, Radio resource management, Reconfigurable computing


Fenofibrate-loaded microemulsions composed of Labrafil M 1944 CS, Capryol PGMC and fenofibrate as the dispersed phase and Labrasol in demineralised water as the continuous phase were prepared by utilising a Shirasu-porous-glass (SPG) membrane emulsification technique. The process parameters were optimised by adjusting the feed pressure (15-45 kPa), agitator speed (250-800 rpm) and temperature of the continuous phase (25-45°C). As a result, narrowly distributed microemulsions were obtained via SPG membrane emulsification at an agitator speed of 250 rpm, a feed pressure of 30 kPa and a continuous phase temperature of 25°C. Furthermore, TEM images clearly showed that the microemulsion prepared by SPG membrane emulsification had a uniform, spherical morphology with a narrow size distribution. Our results indicated that the SPG membrane emulsification technique is highly efficient for the preparation of narrowly distributed microemulsions with relatively smaller particle sizes compared with the common stirring method.

Concepts: Condensed matter physics, Colloid, Liquid, Phase, Emulsion, Soft matter, Microemulsion, Flocculation


We report the use of liquid crystal (LC)-in-water emulsions for the synthesis of either spherical or non-spherical particles with chemically distinct domains located at the poles of the particles. The approach involves the localization of solid colloids at topological defects that form predictably at surfaces of water-dispersed LC droplets. By polymerizing the LC droplets displaying the colloids at their surface defects, we demonstrate formation of both spherical and, upon extraction of the mesogen, anisotropic composite particles with colloids located at either one or both of the poles. Because the colloids protrude from the surfaces of the particles, they also define organized, chemical patches with functionality controlled by the colloid surface.

Concepts: Crystal, Condensed matter physics, Colloid, Liquid, Emulsion, Soft matter, Liquid crystal, Torus


Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

Concepts: Cell biology, Cell culture, Tissue, Soft matter, Cellular component, Medical research, Sensors