Discover the most talked about and latest scientific content & concepts.

Concept: Social behavior


Ornament displays seen in animals convey information about genetic quality, developmental history and current disease state to both prospective sexual partners and potential rivals. In this context, showing of teeth through smiles etc is a characteristic feature of human social interaction. Tooth development is influenced by genetic and environmental factors. Adult teeth record environmental and traumatic events, as well as the effects of disease and ageing. Teeth are therefore a rich source of information about individuals and their histories. This study examined the effects of digital manipulations of tooth colour and spacing. Results showed that deviation away from normal spacing and/or the presence of yellowed colouration had negative effects on ratings of attractiveness and that these effects were markedly stronger in female models. Whitening had no effect beyond that produced by natural colouration. This indicates that these colour induced alterations in ratings of attractiveness are mediated by increased/decreased yellowing rather than whitening per se. Teeth become yellower and darker with age. Therefore it is suggested that whilst the teeth of both sexes act as human ornament displays, the female display is more complex because it additionally signals residual reproductive value.

Concepts: Disease, Male, Reproduction, Female, Behavior, Teeth, Yellow, Social behavior


The present study described a new type of multi-person neurofeedback with the neural synchronization between two participants as the direct regulating target, termed as “cross-brain neurofeedback.” As a first step to implement this concept, an experimental platform was built on the basis of functional near-infrared spectroscopy, and was validated with a two-person neurofeedback experiment. This novel concept as well as the experimental platform established a framework for investigation of the relationship between multiple participants' cross-brain neural synchronization and their social behaviors, which could provide new insight into the neural substrate of human social interactions.

Concepts: Psychology, Sociology, Science, Experiment, Theory, Behavior, Near infrared spectroscopy, Social behavior


Cost-benefit trade-offs for individuals participating in social behaviors are the basis for current theories on the evolution of social behaviors and societies. However, research on social strategies has largely ignored solitary animals, in which we assume that rare interactions are explained by courtship or territoriality or, in special circumstances, resource distributions or kinship. We used directed network analysis of conspecific tolerance at food sources to provide evidence that a solitary carnivore, the puma (Puma concolor), exhibited adaptive social strategies similar to more social animals. Every puma in our analysis participated in the network, which featured densely connected communities delineated by territorial males. Territorial males also structured social interactions among pumas. Contrary to expectations, conspecific tolerance was best characterized by direct reciprocity, establishing a fitness benefit to individuals that participated in social behaviors. However, reciprocity operated on a longer time scale than in gregarious species. Tolerance was also explained by hierarchical reciprocity, which we defined as network triangles in which one puma (generally male) received tolerance from two others (generally females) that also tolerated each other. Hierarchical reciprocity suggested that males might be cheating females; nevertheless, we suspect that males and females used different fitness currencies. For example, females may have benefited from tolerating males through the maintenance of social niches that support breeding opportunities. Our work contributes evidence of adaptive social strategies in a solitary carnivore and support for the applicability of theories of social behavior across taxa, including solitary species in which they are rarely tested.

Concepts: Psychology, Human, Male, Sociology, Social relation, Felidae, Social behavior, Puma


Individuals with autism spectrum disorder (ASD), including those who otherwise require less support, face severe difficulties in everyday social interactions. Research in this area has primarily focused on identifying the cognitive and neurological differences that contribute to these social impairments, but social interaction by definition involves more than one person and social difficulties may arise not just from people with ASD themselves, but also from the perceptions, judgments, and social decisions made by those around them. Here, across three studies, we find that first impressions of individuals with ASD made from thin slices of real-world social behavior by typically-developing observers are not only far less favorable across a range of trait judgments compared to controls, but also are associated with reduced intentions to pursue social interaction. These patterns are remarkably robust, occur within seconds, do not change with increased exposure, and persist across both child and adult age groups. However, these biases disappear when impressions are based on conversational content lacking audio-visual cues, suggesting that style, not substance, drives negative impressions of ASD. Collectively, these findings advocate for a broader perspective of social difficulties in ASD that considers both the individual’s impairments and the biases of potential social partners.

Concepts: Psychology, Sociology, Autism, Asperger syndrome, Autism spectrum, Behavior, Social relation, Social behavior


BACKGROUND: Autism spectrum disorders comprise a range of neurodevelopmental pathologies characterized, among other symptoms, by impaired social interactions. Individuals with this diagnosis are reported to often identify people by repetitively sniffing pieces of clothing or the body odor of family members. Since body odors are known to initiate and mediate many different social behaviors, smelling the body odor of a family member might constitute a sensory-based action promoting social contact. In light of this, we hypothesized that the body odor of a family member would facilitate the appearance of automatic imitation, an essential social skill known to be impaired in autism. METHODS: We recruited 20 autistic and 20 typically developing children. Body odors were collected from the children’s mothers' axillae. A child observed a model (their mother or a stranger mother) execute (or not) a reach-to-grasp action toward an object. Subsequently, she performed the same action. The object was imbued with the child’s mother’s odor, a stranger mother’s odor, or no odor. The actions were videotaped, and movement time was calculated post hoc via a digitalization technique. RESULTS: Automatic imitation effects-expressed in terms of total movement time reduction-appear in autistic children only when exposed to objects paired with their own mother’s odor. CONCLUSIONS: The maternal odor, which conveys a social message otherwise neglected, helps autistic children to covertly imitate the actions of others. Our results represent a starting point holding theoretical and practical relevance for the development of new strategies to enhance communication and social behavior among autistic individuals.

Concepts: Autism, Pervasive developmental disorder, Asperger syndrome, Autism spectrum, PDD-NOS, Odor, Social behavior, Body odor


Compensatory social behavior in nonhuman animals following maternal loss has been documented, but understanding of how orphans allocate bonding to reconstruct their social networks is limited. Successful social integration may be critical to survival and reproduction for highly social species and, therefore, may be tied to population persistence. We examined the social partners involved in affiliative interactions of female orphans and non-orphans in an elephant population in Samburu, northern Kenya that experienced heightened adult mortality driven by drought and intense ivory poaching. We contrasted partners across different competitive contexts to gain insight to the influence of resource availability on social interactions. Though the number of partners did not differ between orphans and non-orphans, their types of social partners did. Orphans interacted with sisters and matriarchs less while feeding than did non-orphans, but otherwise their affiliates were similar. While resting under spatially concentrated shade, orphans had markedly less access to mature adults but affiliated instead with sisters, bulls, and age mates. Orphan propensity to strengthen bonds with non-dominant animals appears to offer routes to social integration following maternal loss, but lack of interaction with adult females suggests orphans may experience decreased resource access and associated fitness costs in this matriarchal society.

Concepts: Male, Sociology, Hunting, Elephant, Social behavior, Ivory, Orphan, Matriarchy


The evolution of humans as a highly social species tuned the brain to the social world; yet the mechanisms by which humans coordinate their brain response online during social interactions remain unclear. Using hyperscanning EEG recordings, we measured brain-to-brain synchrony in 104 adults during a male-female naturalistic social interaction, comparing romantic couples and strangers. Neural synchrony was found for couples, but not for strangers, localized to temporal-parietal structures and expressed in gamma rhythms. Brain coordination was not found during a three-minute rest, pinpointing neural synchrony to social interactions among affiliative partners. Brain-to-brain synchrony was linked with behavioral synchrony. Among couples, neural synchrony was anchored in moments of social gaze and positive affect, whereas among strangers, longer durations of social gaze and positive affect correlated with greater neural synchrony. Brain-to-brain synchrony was unrelated to episodes of speech/no-speech or general content of conversation. Our findings link brain-to-brain synchrony to the degree of social connectedness among interacting partners, ground neural synchrony in key nonverbal social behaviors, and highlight the role of human attachment in providing a template for two-brain coordination.

Concepts: Psychology, Brain, Human, Sociology, Electroencephalography, Behavior, Social relation, Social behavior


Massive datasets that capture human movements and social interactions have catalyzed rapid advances in our quantitative understanding of human behavior during the past years. One important aspect affecting both areas is the critical role space plays. Indeed, growing evidence suggests both our movements and communication patterns are associated with spatial costs that follow reproducible scaling laws, each characterized by its specific critical exponents. Although human mobility and social networks develop concomitantly as two prolific yet largely separated fields, we lack any known relationships between the critical exponents explored by them, despite the fact that they often study the same datasets. Here, by exploiting three different mobile phone datasets that capture simultaneously these two aspects, we discovered a new scaling relationship, mediated by a universal flux distribution, which links the critical exponents characterizing the spatial dependencies in human mobility and social networks. Therefore, the widely studied scaling laws uncovered in these two areas are not independent but connected through a deeper underlying reality.

Concepts: Psychology, Sociology, Knowledge, Behavior, Human behavior, Social sciences, Mobile phone, Social behavior


The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS), a condition caused by deletion of ~28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT) and arginine vasopressin (AVP) regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music), and a negative physical stressor (cold). We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior.

Concepts: Psychology, Genetics, Sociology, Neuroscience, Behavior, Human behavior, Social relation, Social behavior


Alcohol use and abuse profoundly influences a variety of behaviors, including social interactions. In some cases, it erodes social relationships; in others, it facilitates sociality. Here, we show that voluntary alcohol consumption can inhibit male partner preference (PP) formation (a laboratory proxy for pair bonding) in socially monogamous prairie voles (Microtus ochrogaster). Conversely, female PP is not inhibited, and may be facilitated by alcohol. Behavior and neurochemical analysis suggests that the effects of alcohol on social bonding are mediated by neural mechanisms regulating pair bond formation and not alcohol’s effects on mating, locomotor, or aggressive behaviors. Several neuropeptide systems involved in the regulation of social behavior (especially neuropeptide Y and corticotropin-releasing factor) are modulated by alcohol drinking during cohabitation. These findings provide the first evidence to our knowledge that alcohol has a direct impact on the neural systems involved in social bonding in a sex-specific manner, providing an opportunity to explore the mechanisms by which alcohol affects social relationships.

Concepts: Psychology, Sociology, Behavior, Human behavior, Social relation, Social behavior, Microtus, Social