SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Snake scales

240

Ayahuasca is an Amazonian psychoactive plant beverage containing the serotonergic 5-HT(2A) agonist N,N-dimethyltryptamine (DMT) and monoamine oxidase-inhibiting alkaloids (harmine, harmaline and tetrahydroharmine) that render it orally active. Ayahuasca ingestion is a central feature in several Brazilian syncretic churches that have expanded their activities to urban Brazil, Europe and North America. Members of these groups typically ingest ayahuasca at least twice per month. Prior research has shown that acute ayahuasca increases blood flow in prefrontal and temporal brain regions and that it elicits intense modifications in thought processes, perception and emotion. However, regular ayahuasca use does not seem to induce the pattern of addiction-related problems that characterize drugs of abuse. To study the impact of repeated ayahuasca use on general psychological well-being, mental health and cognition, here we assessed personality, psychopathology, life attitudes and neuropsychological performance in regular ayahuasca users (n = 127) and controls (n = 115) at baseline and 1 year later. Controls were actively participating in non-ayahuasca religions. Users showed higher Reward Dependence and Self-Transcendence and lower Harm Avoidance and Self-Directedness. They scored significantly lower on all psychopathology measures, showed better performance on the Stroop test, the Wisconsin Card Sorting Test and the Letter-Number Sequencing task from the WAIS-III, and better scores on the Frontal Systems Behavior Scale. Analysis of life attitudes showed higher scores on the Spiritual Orientation Inventory, the Purpose in Life Test and the Psychosocial Well-Being test. Despite the lower number of participants available at follow-up, overall differences with controls were maintained one year later. In conclusion, we found no evidence of psychological maladjustment, mental health deterioration or cognitive impairment in the ayahuasca-using group.

Concepts: Cognitive psychology, Cognition, Psychiatry, Perception, Mind, Snake scales, Neuropsychological test, Psychology

179

The lambeosaurine Tsintaosaurus spinorhinus has traditionally been reconstructed with an elevated, hollow, spike-like crest composed entirely of the nasal bones, although this has been disputed. Here, we provide a new reconstruction of the skull of this species based on reexamination and reinterpretation of the morphology and articular relationships of the type and Paratype skulls and a fragmentary crest. We confirm the presence of a supracranial crest composed of the elevated nasal bones, but also including the premaxillae. We hypothesize that the crest is a tall, lobate, hollow structure that projects dorsally and slightly caudally a distance greater than the height of the skull along the quadrate. In our reconstruction, the nasal passage passes through the crest, but enters the skull rostral to the tubular process of the nasals, not through it. Tsintaosaurus spinorhinus is rediagnosed on the basis of a suite of cranial autapomorphies including a circumnarial fossa subdivided into three accessory fossae, prefrontal with ascending rostral process and lateral flange, nasals fused sagittally to form elongate tubular process that rises dorsally from skull roof, each nasal being expanded rostrocaudally into a rhomboid distal process, and medial processes of premaxillae at the summit of the cranial crest inserted between rhomboid processes of nasals. Tsintaosaurus spinorhinus lacks characters that are present in more derived lambeosaurines (parasaurolophins and lambeosaurins), such as rotation of the caudal margin of the crest to an acute angle with the skull roof, lateral processes of the nasals that enclose part of the intracranial cavity and participate in the formation of the walls of the common median chamber, and a smooth narial fossa lacking ridges and accessory fossae. We hypothesize that ancestrally the rostrum of lambeosaurines may have been more similar to that in Saurolophinae, and became subsequently reduced in complexity during evolution of the group.

Concepts: Vomer, Snake scales, Skull and Bones, Anatomy, Animal anatomy, Occipital bone, Anatomical terms of location, Skull

165

Humans naturally have a sense of humor. Experiencing humor not only encourages social interactions, but also produces positive physiological effects on the human body, such as lowering blood pressure. Recent neuro-imaging studies have shown evidence for distinct mental state changes at work in people experiencing humor. However, the temporal characteristics of these changes remain elusive. In this paper, we objectively measured humor-related mental states from single-trial functional magnetic resonance imaging (fMRI) data obtained while subjects viewed comedy TV programs. Measured fMRI data were labeled on the basis of the lag before or after the viewer’s perception of humor (humor onset) determined by the viewer-reported humor experiences during the fMRI scans. We trained multiple binary classifiers, or decoders, to distinguish between fMRI data obtained at each lag from ones obtained during a neutral state in which subjects were not experiencing humor. As a result, in the right dorsolateral prefrontal cortex and the right temporal area, the decoders showed significant classification accuracies even at two seconds ahead of the humor onsets. Furthermore, given a time series of fMRI data obtained during movie viewing, we found that the decoders with significant performance were also able to predict the upcoming humor events on a volume-by-volume basis. Taking into account the hemodynamic delay, our results suggest that the upcoming humor events are encoded in specific brain areas up to about five seconds before the awareness of experiencing humor. Our results provide evidence that there exists a mental state lasting for a few seconds before actual humor perception, as if a viewer is expecting the future humorous events.

Concepts: Snake scales, Functional magnetic resonance imaging, Humour, Attention versus memory in prefrontal cortex, Comedy, Cerebrum, Magnetic resonance imaging, Brain

154

Although neuroscientific research has revealed experience-dependent brain changes across the life span in sensory, motor, and cognitive domains, plasticity relating to social capacities remains largely unknown. To investigate whether the targeted mental training of different cognitive and social skills can induce specific changes in brain morphology, we collected longitudinal magnetic resonance imaging (MRI) data throughout a 9-month mental training intervention from a large sample of adults between 20 and 55 years of age. By means of various daily mental exercises and weekly instructed group sessions, training protocols specifically addressed three functional domains: (i) mindfulness-based attention and interoception, (ii) socio-affective skills (compassion, dealing with difficult emotions, and prosocial motivation), and (iii) socio-cognitive skills (cognitive perspective-taking on self and others and metacognition). MRI-based cortical thickness analyses, contrasting the different training modules against each other, indicated spatially diverging changes in cortical morphology. Training of present-moment focused attention mostly led to increases in cortical thickness in prefrontal regions, socio-affective training induced plasticity in frontoinsular regions, and socio-cognitive training included change in inferior frontal and lateral temporal cortices. Module-specific structural brain changes correlated with training-induced behavioral improvements in the same individuals in domain-specific measures of attention, compassion, and cognitive perspective-taking, respectively, and overlapped with task-relevant functional networks. Our longitudinal findings indicate structural plasticity in well-known socio-affective and socio-cognitive brain networks in healthy adults based on targeted short daily mental practices. These findings could promote the development of evidence-based mental training interventions in clinical, educational, and corporate settings aimed at cultivating social intelligence, prosocial motivation, and cooperation.

Concepts: Educational psychology, Prefrontal cortex, Brain tumor, Snake scales, Psychology, Cerebral cortex, Brain, Magnetic resonance imaging

136

In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness.

Concepts: Lobes of the brain, Frontal lobe, White matter, Skull, Magnetic resonance imaging, Cerebral cortex, Snake scales, Cerebrum

88

Pediatric OSA is associated with cognitive risk. Since adult OSA manifests MRI evidence of brain injury, and animal models lead to regional neuronal losses, pediatric OSA patients may also be affected. We assessed the presence of neuronal injury, measured as regional grey matter volume, in 16 OSA children (8 male, 8.1 ± 2.2 years, AHI:11.1 ± 5.9 events/hr), and 200 control subjects (84 male, 8.2 ± 2.0 years), 191 of whom were from the NIH-Pediatric MRI database. High resolution T1-weighted whole-brain images were assessed between groups with voxel-based morphometry, using ANCOVA (covariates, age and gender; family-wise error correction, P < 0.01). Significant grey matter volume reductions appeared in OSA throughout areas of the superior frontal and prefrontal, and superior and lateral parietal cortices. Other affected sites included the brainstem, ventral medial prefrontal cortex, and superior temporal lobe, mostly on the left side. Thus, pediatric OSA subjects show extensive regionally-demarcated grey matter volume reductions in areas that control cognition and mood functions, even if such losses are apparently independent of cognitive deficits. Since OSA disease duration in our subjects is unknown, these findings may result from either delayed neuronal development, neuronal damaging processes, or a combination thereof, and could either reflect neuronal atrophy or reductions in cellular volume (neurons and glia).

Concepts: Snake scales, Neuron, Cerebral cortex, Sleep apnea, Obstructive sleep apnea, Cerebrum, Frontal lobe, Brain

31

Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network.

Concepts: Premotor cortex, Snake scales, Limbic system, Parietal lobe, Prefrontal cortex, Brain, Cerebrum, Frontal lobe

28

This study addresses a gap in the attachment literature by investigating maternal neural response to cry related to infant attachment classifications and behaviors. Twenty-two primiparous mothers and their 18-month old infants completed the Strange Situation (SS) procedure to elicit attachment behaviors. During a separate functional MRI session, mothers were exposed to their own infant’s cry sound, as well as an unfamiliar infant’s cry and control sound. Maternal neural response to own infant cry related to both overall attachment security and specific infant behaviors. Mothers of less secure infants maintained greater activation to their cry in left parahippocampal and amygdala regions and the right posterior insula consistent with a negative schematic response bias. Mothers of infants exhibiting more avoidant or contact maintaining behaviors during the SS showed diminished response across left prefrontal, parietal, and cerebellar areas involved in attentional processing and cognitive control. Mothers of infants exhibiting more disorganized behavior showed reduced response in bilateral temporal and subcallosal areas relevant to social cognition and emotion regulation. No differences by attachment classification were found. Implications for attachment transmission models are discussed.

Concepts: Breastfeeding, Snake scales, Cerebrum, Mary Ainsworth, Infant, Brain, Attachment theory, Psychology

28

The classic imaging findings of posterior reversible encephalopathy syndrome (PRES) are of bilateral parietal and occipital subcortical vasogenic oedema, and are well established in the literature. As experience with PRES grows, varied and atypical presentations are being increasingly described. This pictorial review illustrates the variable presentations of PRES, including cases with atypical imaging findings. We illustrate cases of PRES with varying distributions of vasogenic oedema as well as cases with atypical imaging findings, such as variations of haemorrhage and restricted diffusion. Atypical imaging findings should not dissuade the diagnosis of PRES in the appropriate clinical situation, and knowledge of the varied appearance and atypical findings of PRES allows the radiologist to make this diagnosis.

Concepts: Graphic design, Snake scales, Posterior reversible encephalopathy syndrome, IMAGE

27

Abstract Objective: To test the null hypothesis that there is no difference between the effects of fan-type rapid (FRME) and rapid maxillary expansion (RME) used with an acrylic bonded expansion appliance on dentofacial structures in early occlusal stages. Materials and Methods: This was a prospective clinical trial. The FRME group had an anterior constricted maxillary width with a normal intermolar width, and the RME group had bilateral constricted maxillary width. The FRME group consisted of 20 patients (mean age, 8.96 ± 1.19 years), and the RME group consisted of 22 patients (mean age, 8.69 ± 0.66 years). Lateral and frontal cephalometric radiographs and dental casts were taken before and after expansion and 3 months after completing treatment for each patient. The data were compared using repeated-measures analysis of variance. The paired-samples t-test was used to evaluate treatment and retention effects, and the independent samples t-test was used to consider the differences between the two groups. Results: The maxilla moved downward and forward in both groups. The nasal cavity and maxillary width were expanded more in the RME group, and there were only a few relapses in this group during the retention period. There was significant labial tipping of the upper incisors in the FRME expansion group. The expansion of intercanine width was similar in both groups, but the expansion of intermolar width was significantly greater in the RME group. Conclusion: The null hypothesis was rejected. There was a difference between the effects of FRME and RME used with an acrylic bonded expansion appliance on dentofacial structures in the early occlusal stages.

Concepts: Nasal cavity, Snake scales, Levene's test, F-test, Null hypothesis, Statistics, Student's t-test, Normal distribution