Discover the most talked about and latest scientific content & concepts.

Concept: Smooth muscle


Modeling clinically relevant tissue responses using cell models poses a significant challenge for drug development, in particular for drug induced liver injury (DILI). This is mainly because existing liver models lack longevity and tissue-level complexity which limits their utility in predictive toxicology. In this study, we established and characterized novel bioprinted human liver tissue mimetics comprised of patient-derived hepatocytes and non-parenchymal cells in a defined architecture. Scaffold-free assembly of different cell types in an in vivo-relevant architecture allowed for histologic analysis that revealed distinct intercellular hepatocyte junctions, CD31+ endothelial networks, and desmin positive, smooth muscle actin negative quiescent stellates. Unlike what was seen in 2D hepatocyte cultures, the tissues maintained levels of ATP, Albumin as well as expression and drug-induced enzyme activity of Cytochrome P450s over 4 weeks in culture. To assess the ability of the 3D liver cultures to model tissue-level DILI, dose responses of Trovafloxacin, a drug whose hepatotoxic potential could not be assessed by standard pre-clinical models, were compared to the structurally related non-toxic drug Levofloxacin. Trovafloxacin induced significant, dose-dependent toxicity at clinically relevant doses (≤ 4uM). Interestingly, Trovafloxacin toxicity was observed without lipopolysaccharide stimulation and in the absence of resident macrophages in contrast to earlier reports. Together, these results demonstrate that 3D bioprinted liver tissues can both effectively model DILI and distinguish between highly related compounds with differential profile. Thus, the combination of patient-derived primary cells with bioprinting technology here for the first time demonstrates superior performance in terms of mimicking human drug response in a known target organ at the tissue level.

Concepts: Glucose, Liver, Glycogen, Actin, Bile, Toxicology, Smooth muscle, Hepatocyte


There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures.

Concepts: Cardiac muscle, Cell culture, Urinary bladder, Actin, Computer graphics, Muscle contraction, Smooth muscle, HEK cell


Chronic treatment with angiotensin receptor blockers is largely accepted for protecting cerebral circulation during hypertension, but beneficial effects of short-term treatments are questionable, as highlighted by the recent SCAST trial. We compared the impact of 10 days treatment with candesartan (as SCAST) versus telmisartan (previously described to reverse arteriolar remodeling, chronic treatment) on pial arterioles of spontaneously hypertensive rats (SHR). We explored whether PPAR-gamma agonist activity or AT(1) receptor blockade are involved in their differential effects. In the first study, 4-month-old male SHR were treated with telmisartan (TELMI, 2 mg/kg per day) or candesartan cilexetil (CANDE, 10 mg/kg per day) and compared to vehicle treated SHR and normotensive WKY. In a second study, SHR were treated with CANDE, pioglitazone (a PPAR-gamma agonist, PIO 2.5 mg/kg per day) or CANDE+PIO, compared to TELMI. Internal diameter of pial arterioles (ID, cranial window) was measured at baseline, during hemorrhage-induced hypotension, or following suffusion of Ang II (10(-6) mol/L) or EDTA inactivation of smooth muscle cells (passive ID). PPAR-gamma and eNOS (target gene of PPAR-gamma) mRNA were evaluated in brain microvessels. For similar antihypertensive effects, TELMI (+44% versus SHR), but not CANDE, increased baseline ID. During hemorrhage, ID in TELMI group was similar to WKY, while ID in SHR and CANDE remained lower. In the second study, TELMI (+36%, versus SHR) and CANDE+PIO (+43%) increased baseline ID, but not CANDE or PIO alone. TELMI (-66%) and CANDE+PIO (-69%), but neither CANDE nor PIO alone, decreased Ang II-induced vasoconstriction. CANDE+PIO, but not CANDE, increased passive ID. In both studies, PPAR-gamma and eNOS expressions were higher in TELMI than CANDE. Short-term treatment with TELMI, but not with CANDE, reverses narrowing of pial arteriolar ID in SHR. This may involve PPAR-gamma related mechanisms, since CANDE+PIO treatment induced similar effects, and a better blockade of AT(1) receptors.

Concepts: Hypertension, Blood pressure, Smooth muscle, Angiotensin, Angiotensin II receptor antagonist, Angiotensin receptor, Candesartan, Angiotensin II receptor antagonists


Previous research has demonstrated that ClC-3 is responsible for volume-regulated Cl(-)current (ICl.vol) in vascular smooth muscle cells (VSMCs). However, it is still not clear whether and how ClC-3 is transported to cell membranes, resulting in alteration ofICl.vol.Methods and Results:Volume-regulated chloride current (ICl.vol) was recorded by whole-cell patch clamp recording, and Western blotting and co-immunoprecipitation were performed to examine protein expression and protein-protein interaction. Live cell imaging was used to observe ClC-3 transporting. The results showed that an overexpression of endophilin A2 could increaseICl.vol, while endophilin A2 knockdown decreasedICl.vol. In addition, the SH3 domain of endophilin A2 mediated its interaction with ClC-3 and promotes ClC-3 transportation from the cytoplasm to cell membranes. The regulation of ClC-3 channel activity was also verified in basilar arterial smooth muscle cells (BASMCs) isolated from endophilin A2 transgenic mice. Moreover, endophilin A2 increase VSMCs proliferation induced by endothelin-1 or hypo-osmolarity.

Concepts: Protein, Gene expression, Molecular biology, Cell membrane, Cytoplasm, Ion channel, Smooth muscle, Vascular smooth muscle


Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives.

Concepts: Blood vessel, Cardiac muscle, Actin, Artery, Muscle contraction, Smooth muscle, Muscular system, Vascular smooth muscle


Tissue engineering approaches have the potential to increase the physiologic relevance of human iPS-derived cells, such as cardiomyocytes (iPS-CM). However, forming Engineered Heart Muscle (EHM) typically requires >1 million cells per tissue. Existing miniaturization strategies involve complex approaches not amenable to mass production, limiting the ability to use EHM for iPS-based disease modeling and drug screening. Micro-scale cardiospheres are easily produced, but do not facilitate assembly of elongated muscle or direct force measurements. Here we describe an approach that combines features of EHM and cardiospheres: Micro-Heart Muscle (μHM) arrays, in which elongated muscle fibers are formed in an easily fabricated template, with as few as 2,000 iPS-CM per individual tissue. Within μHM, iPS-CM exhibit uniaxial contractility and alignment, robust sarcomere assembly, and reduced variability and hypersensitivity in drug responsiveness, compared to monolayers with the same cellular composition. μHM mounted onto standard force measurement apparatus exhibited a robust Frank-Starling response to external stretch, and a dose-dependent inotropic response to the β-adrenergic agonist isoproterenol. Based on the ease of fabrication, the potential for mass production and the small number of cells required to form μHM, this system provides a potentially powerful tool to study cardiomyocyte maturation, disease and cardiotoxicology in vitro.

Concepts: Heart, Muscle, Cardiac muscle, Skeletal muscle, Smooth muscle, Muscular system, Sarcomere, Troponin


Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 × 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

Concepts: DNA, Gene, Genetics, Bioinformatics, Molecular biology, Chromosome, Single-nucleotide polymorphism, Smooth muscle


Epicardial cells on the heart’s surface give rise to coronary artery smooth muscle cells (caSMCs) located deep in the myocardium. However, the differentiation steps between epicardial cells and caSMCs are unknown as are the final maturation signals at coronary arteries. Here, we use clonal analysis and lineage tracing to show that caSMCs derive from pericytes, mural cells associated with microvessels, and that these cells are present in adults. During development following the onset of blood flow, pericytes at arterial remodeling sites upregulate Notch3 while endothelial cells express Jagged-1. Deletion of Notch3 disrupts caSMC differentiation. Our data support a model wherein epicardial-derived pericytes populate the entire coronary microvasculature, but differentiate into caSMCs at arterial remodeling zones in response to Notch signaling. Our data is the first demonstration that pericytes are progenitors for smooth muscle, and their presence in adult hearts reveal a new potential cell type for targeting during cardiovascular disease.

Concepts: Atherosclerosis, Heart, Blood vessel, Atheroma, Artery, Coronary circulation, Cardiovascular system, Smooth muscle


Naked mole-rats (NMRs; Heterocephalus glaber) are highly adapted, eusocial rodents renowned for their extreme longevity and resistance to cancer. Because cancer has not been formally described in this species, NMRs have been increasingly utilized as an animal model in aging and cancer research. We previously reported the occurrence of several age-related diseases, including putative pre-neoplastic lesions, in zoo-housed NMR colonies. Here, we report for the first time 2 cases of cancer in zoo-housed NMRs. In Case No. 1, we observed a subcutaneous mass in the axillary region of a 22-year-old male NMR, with histologic, immunohistochemical (pancytokeratin positive, rare p63 immunolabeling, and smooth muscle actin negative), and ultrastructural characteristics of an adenocarcinoma possibly of mammary or salivary origin. In Case No. 2, we observed a densely cellular, poorly demarcated gastric mass of polygonal cells arranged in nests with positive immunolabeling for synaptophysin and chromogranin indicative of a neuroendocrine carcinoma in an approximately 20-year-old male NMR. We also include a brief discussion of other proliferative growths and pre-cancerous lesions diagnosed in 1 zoo colony. Although these case reports do not alter the longstanding observation of cancer resistance, they do raise questions about the scope of cancer resistance and the interpretation of biomedical studies in this model. These reports also highlight the benefit of long-term disease investigations in zoo-housed populations to better understand naturally occurring disease processes in species used as models in biomedical research.

Concepts: Cancer, Disease, Animal testing, Anatomical pathology, Actin, Mammal, Smooth muscle, Naked mole rat


Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation-contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 μM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrically evoked ECC within ∼10-20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca(2+) transients followed by complete failure of ECC, independent of Ca(2+) store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca(2+) entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca(2+) currents of cardiac and skeletal muscle, and [(3)H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [(3)H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca(2+) and RyR channels in skeletal muscle, and L-type Ca(2+) entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.

Concepts: Heart, Muscle, Cardiac muscle, Ryanodine receptor, Skeletal muscle, Smooth muscle, Muscular system, Striated muscle