SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Small interfering RNA

177

Although RNA interference (RNAi) is known to play an important part in defense against viruses of invertebrates, its contribution to mammalian anti-viral defense has been a matter of dispute. This is surprising because all components of the RNAi machinery necessary for robust RNAi-mediated restriction of viruses are conserved in mammals, and the introduction of synthetic small interfering RNAs (siRNAs) into cells efficiently silences the replication of viruses that contain siRNA complementary sequences in those cells. Here, I discuss the reasons for the dispute, and review the evidence that RNAi is a part of the physiological defense of mammalian cells against viral infections.

Concepts: DNA, Gene expression, Bacteria, Virus, RNA, Small interfering RNA, RNA interference, RNA polymerase

172

BACKGROUND: RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. RESULTS: In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs the unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. CONCLUSIONS: This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening experiments which may benefit the biological research with respect to cellular processes and pathways.

Concepts: DNA, Gene, Genetics, Gene expression, Mathematics, RNA, Small interfering RNA, RNA interference

168

BACKGROUND: Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties. Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA degradation are involved in these phenomena has not been known. Here, we addressed this question using deep-sequencing and bioinformatic analyses of small RNAs. RESULTS: We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems. Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that produced phased siRNAs were conserved. CONCLUSIONS: The features of siRNA production found to be common to cosuppression and naturally occurring silencing of the CHS-A gene indicate mechanistic similarities between these silencing systems especially in the biosynthetic processes of siRNAs including cleavage of CHS-A transcripts and subsequent production of secondary siRNAs in exon 2. The data also suggest that these events occurred at multiple sites, which can be a feature of these silencing phenomena.

Concepts: DNA, Gene, Genetics, Molecular biology, RNA, Messenger RNA, Small interfering RNA, RNA interference

166

We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage.

Concepts: DNA, Gene, Genetics, Gene expression, RNA, Cell biology, Messenger RNA, Small interfering RNA

133

Despite more than two decades of research and development on nucleic acid vaccines, there is still no commercial product for human use. Taking advantage of the recent innovations in systemic delivery of short interfering RNA (siRNA) using lipid nanoparticles (LNPs), we developed a self-amplifying RNA vaccine. Here we show that nonviral delivery of a 9-kb self-amplifying RNA encapsulated within an LNP substantially increased immunogenicity compared with delivery of unformulated RNA. This unique vaccine technology was found to elicit broad, potent, and protective immune responses, that were comparable to a viral delivery technology, but without the inherent limitations of viral vectors. Given the many positive attributes of nucleic acid vaccines, our results suggest that a comprehensive evaluation of nonviral technologies to deliver self-amplifying RNA vaccines is warranted.

Concepts: Immune system, RNA, Vaccine, Vaccination, Immunology, Small interfering RNA, RNA interference, Nucleic acid

34

The development of safe and efficacious gene vectors has limited greatly the potential for therapeutic treatments based on messenger RNA (mRNA). Lipid nanoparticles (LNPs) formed by an ionizable cationic lipid (here DLin-MC3-DMA), helper lipids (distearoylphosphatidylcholine, DSPC, and cholesterol), and a poly(ethylene glycol) (PEG) lipid have been identified as very promising delivery vectors of short interfering RNA (siRNA) in different clinical phases; however, delivery of high-molecular weight RNA has been proven much more demanding. Herein we elucidate the structure of hEPO modified mRNA-containing LNPs of different sizes and show how structural differences affect transfection of human adipocytes and hepatocytes, two clinically relevant cell types. Employing small-angle scattering, we demonstrate that LNPs have a disordered inverse hexagonal internal structure with a characteristic distance around 6 nm in presence of mRNA, whereas LNPs containing no mRNA do not display this structure. Furthermore, using contrast variation small-angle neutron scattering, we show that one of the lipid components, DSPC, is localized mainly at the surface of mRNA-containing LNPs. By varying LNP size and surface composition we demonstrate that both size and structure have significant influence on intracellular protein production. As an example, in both human adipocytes and hepatocytes, protein expression levels for 130 nm LNPs can differ as much as 50-fold depending on their surface characteristics, likely due to a difference in the ability of LNP fusion with the early endosome membrane. We consider these discoveries to be fundamental and opening up new possibilities for rational design of synthetic nanoscopic vehicles for mRNA delivery.

Concepts: DNA, Protein, Cell nucleus, Gene expression, RNA, Ribosome, Messenger RNA, Small interfering RNA

29

Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)-the 22-30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads-are generated independently of Dicer from single-stranded precursors. piRNA 5' ends are defined either by Zucchini, the Drosophila homologue of mitoPLD-a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3' ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3' ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3' ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3'-to-5' exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5' and 3' ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3'-end formation.

Concepts: DNA, Gene, Genetics, Transcription, RNA, Messenger RNA, Small interfering RNA, RNA interference

28

Conjugation of small interfering RNA (siRNA) to an asialoglycoprotein receptor ligand derived from N-acetylgalactosamine (GalNAc) facilitates targeted delivery of the siRNA to hepatocytes in vitro and in vivo. The ligands derived from GalNAc are compatible with solid-phase oligonucleotide synthesis and deprotection conditions, with synthesis yields comparable to those of standard oligonucleotides. Subcutaneous (SC) administration of siRNA-GalNAc conjugates resulted in robust RNAi-mediated gene silencing in liver. Refinement of the siRNA chemistry achieved a 5-fold improvement in efficacy over the parent design in vivo with a median effective dose (ED50) of 1 mg/kg following a single dose. This enabled the SC administration of siRNA-GalNAc conjugates at therapeutically relevant doses and, importantly, at dose volumes of ≤1 mL. Chronic weekly dosing resulted in sustained dose-dependent gene silencing for over 9 months with no adverse effects in rodents. The optimally chemically modified siRNA-GalNAc conjugates are hepatotropic and long-acting and have the potential to treat a wide range of diseases involving liver-expressed genes.

Concepts: Gene expression, Molecular biology, RNA, Small interfering RNA, RNA interference, Dose, Oligonucleotide synthesis, Gene silencing

28

TT-034 (PF-05095808) is a recombinant adeno-associated virus serotype 8 (AAV8) agent expressing three short hairpin RNA (shRNA) pro-drugs that target the hepatitis C virus (HCV) RNA genome. The cytosolic enzyme Dicer cleaves each shRNA into multiple, potentially active small interfering RNA (siRNA) drugs. Using next-generation sequencing (NGS) to identify and characterize active shRNAs maturation products, we observed that each TT-034-encoded shRNA could be processed into as many as 95 separate siRNA strands. Few of these appeared active as determined by Sanger 5' RNA Ligase-Mediated Rapid Amplification of cDNA Ends (5-RACE) and through synthetic shRNA and siRNA analogue studies. Moreover, NGS scrutiny applied on 5-RACE products (RACE-seq) suggested that synthetic siRNAs could direct cleavage in not one, but up to five separate positions on targeted RNA, in a sequence-dependent manner. These data support an on-target mechanism of action for TT-034 without cytotoxicity and question the accepted precision of substrate processing by the key RNA interference (RNAi) enzymes Dicer and siRNA-induced silencing complex (siRISC).Molecular Therapy-Nucleic Acids (2014) 3, e145; doi:10.1038/mtna.2013.73; published online 4 February 2014.

Concepts: DNA, Gene expression, Virus, RNA, Small interfering RNA, RNA interference, Gene silencing, Dicer

28

Double-stranded RNA (dsRNA) is involved in different biological processes. At least three different pathways can respond to dsRNA in mammals. One of these pathways is RNA interference (RNAi) where long dsRNA induces sequence-specific degradation of transcripts carrying sequences complementary to dsRNA. Long dsRNA is also a potent trigger of the interferon pathway, a sequence-independent response that leads to global suppression of translation and global RNA degradation. In addition, dsRNA can be edited by adenosine deamination, which may result in nuclear retention and degradation of dsRNA or in alteration of RNA coding potential. Here, we provide a technical review summarizing different strategies of long dsRNA usage. While the review is largely focused on long dsRNA-induced RNAi in mammalian cells, it also provides helpful information on both the in vitro production and in vivo expression of dsRNAs. We present an overview of currently available vectors for dsRNA expression and provide the latest update on oocyte-specific transgenic RNAi approaches.

Concepts: DNA, Gene, Bacteria, Molecular biology, Virus, RNA, Small interfering RNA, RNA interference