Discover the most talked about and latest scientific content & concepts.

Concept: Silicon photonics


Silicon photonics enables large-scale photonic-electronic integration by leveraging highly developed fabrication processes from the microelectronics industry. However, while a rich portfolio of devices has already been demonstrated on the silicon platform, on-chip light sources still remain a key challenge since the indirect bandgap of the material inhibits efficient photon emission and thus impedes lasing. Here we demonstrate a class of infrared lasers that can be fabricated on the silicon-on-insulator (SOI) integration platform. The lasers are based on the silicon-organic hybrid (SOH) integration concept and combine nanophotonic SOI waveguides with dye-doped organic cladding materials that provide optical gain. We demonstrate pulsed room-temperature lasing with on-chip peak output powers of up to 1.1 W at a wavelength of 1,310 nm. The SOH approach enables efficient mass-production of silicon photonic light sources emitting in the near infrared and offers the possibility of tuning the emission wavelength over a wide range by proper choice of dye materials and resonator geometry.

Concepts: Optics, Light, Electromagnetic radiation, Laser, Electromagnetic spectrum, Photonics, Silicon photonics, Silicon on insulator


In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.

Concepts: Spectroscopy, Laser, Integrated circuit, Surface tension, Raman spectroscopy, Photonics, Silicon photonics, Photonic computing


In today’s age, companies employ machine learning to extract information from large quantities of data. One of those techniques, reservoir computing (RC), is a decade old and has achieved state-of-the-art performance for processing sequential data. Dedicated hardware realizations of RC could enable speed gains and power savings. Here we propose the first integrated passive silicon photonics reservoir. We demonstrate experimentally and through simulations that, thanks to the RC paradigm, this generic chip can be used to perform arbitrary Boolean logic operations with memory as well as 5-bit header recognition up to 12.5 Gbit s(-1), without power consumption in the reservoir. It can also perform isolated spoken digit recognition. Our realization exploits optical phase for computing. It is scalable to larger networks and much higher bitrates, up to speeds >100 Gbit s(-1). These results pave the way for the application of integrated photonic RC for a wide range of applications.

Concepts: Optics, Machine learning, Computer, Logic, Logic gate, Photonics, Boolean logic, Silicon photonics


The emergence of personalized and stratified medicine requires label-free, low-cost diagnostic technology capable of monitoring multiple disease biomarkers in parallel. Silicon photonic biosensors combine high-sensitivity analysis with scalable, low-cost manufacturing, but they tend to measure only a single biomarker and provide no information about their (bio)chemical activity. Here we introduce an electrochemical silicon photonic sensor capable of highly sensitive and multiparameter profiling of biomarkers. Our electrophotonic technology consists of microring resonators optimally n-doped to support high Q resonances alongside electrochemical processes in situ. The inclusion of electrochemical control enables site-selective immobilization of different biomolecules on individual microrings within a sensor array. The combination of photonic and electrochemical characterization also provides additional quantitative information and unique insight into chemical reactivity that is unavailable with photonic detection alone. By exploiting both the photonic and the electrical properties of silicon, the sensor opens new modalities for sensing on the microscale.

Concepts: Medicine, Sensors, Silicon photonics


Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength-division-multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s(-1)), low-voltage (0.5 VPP) and efficient 0.9 fJ per bit error-free operation. This low-energy high-speed operation is enabled by a record electro-optic response, obtained in a vertical p-n junction device that at 250 pm V(-1) (30 GHz V(-1)) is up to 10 times larger than prior demonstrations. In addition, this record electro-optic response is used to compensate for thermal drift over a 7.5 °C temperature range with little additional energy consumption (0.24 fJ per bit for a total energy consumption below 1.03 J per bit). The combined results of highly efficient modulation and electro-optic thermal compensation represent a new paradigm in modulator development and a major step towards single-digit femtojoule-class communications.

Concepts: Energy, Temperature, Thermodynamics, Heat, Modulation, Photonics, Silicon photonics, Telecommunication


Besides being the foundational material for microelectronics, crystalline silicon has long been used for making infrared lenses and mirrors. More recently, silicon has become the key material to achieve large-scale integration of photonic devices for on-chip optical interconnect and signal processing. For optics, silicon has significant advantages: it offers a very high refractive index and is highly transparent in the spectral range from 1.2 to 8 μm. To fully exploit silicon’s superior performance in a remarkably broad range and to enable new optoelectronic functionalities, here we describe a general method to integrate silicon photonic devices on arbitrary foreign substrates. In particular, we apply the technique to integrate silicon micro-ring resonators on mid-infrared compatible substrates for operation in the mid-infrared. These high-performance mid-infrared optical resonators are utilized to demonstrate, for the first time, on-chip cavity-enhanced mid-infrared spectroscopic analysis of organic chemicals with a limit of detection of less than 0.1 ng.

Concepts: Optics, Light, Refractive index, Electromagnetic radiation, Laser, Silicon, Photonics, Silicon photonics


Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using “neural compiler” to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

Concepts: Scientific method, Mathematics, Optics, Integrated circuit, Silicon, Mathematical model, Photonics, Silicon photonics


We fabricated and measured a compact 3 dB hybrid plasmonic directional coupler for silicon photonics integrated circuits with a length of 21.2 μm. The coupler has a 50∶50 coupling ratio over a spectral bandwidth of more than 100 nm around a wavelength of 1.55 μm and has an insertion loss of less than 1 dB.

Concepts: Integrated circuit, Silicon, Units of measurement, Silicon photonics


A highly efficient silicon (Si) hybrid external cavity laser with a wavelength tunable ring reflector is fabricated on a complementary metal-oxide semiconductor (CMOS)-compatible Si-on-insulator (SOI) platform and experimental results with high output power are demonstrated. A III-V semiconductor gain chip is edge-coupled into a SOI cavity chip through a SiNx spot size converter and Si grating couplers are incorporated to enable wafer-scale characterization. The laser output power reaches 20 mW and the highest wall-plug efficiency of 7.8% is measured at 17.3 mW in un-cooled condition. The laser wavelength tuning ranges are 8 nm for the single ring reflector cavity and 35 nm for the vernier ring reflector cavity, respectively. The Si hybrid laser is a promising light source for energy-efficient Si CMOS photonic links.

Concepts: Light, Laser, Integrated circuit, Semiconductor, Silicon, Transistor, Photonics, Silicon photonics


Silicon photonics packaging without optical isolator is of significant importance to realize low fabrication cost and small device size. In this report, impact of external feedback on DFB laser performance is investigated both theoretically and experimentally. Dynamic transfer matrix method and rate equation model are coupled to describe the dynamic interaction between optical field and carriers in a DFB structure under the feedback by external reflection. The calculation model exhibits laser spectrum splits and output intensity fluctuates with increase of the degree of external feedback, in good agreement with experimental results. The theoretical analysis is performed under various feedback parameters, and the optimum packaging condition for DFB laser chip in silicon photonics is guided.

Concepts: Optics, Light, Experiment, Integrated circuit, Control theory, Photonics, Silicon photonics, Quantum optics