Discover the most talked about and latest scientific content & concepts.

Concept: Shock absorber


Abstract -  Aim: Experimental materials incorporating fiberglass cloth were used to develop a thin and lightweight face guard (FG). This study aims to evaluate the effect of fiberglass reinforcement on the flexural and shock absorption properties compared with conventional thermoplastic materials. Material and Method: Four commercial 3.2-mm and 1.6-mm medical splint materials (Aquaplast, Polyform, Co-polymer, and Erkodur) and two experimental materials were examined for use in FGs. The experimental materials were prepared by embedding two or four sheets of a plain woven fiberglass cloth on both surfaces of 1.5-mm Aquaplast. The flexural strength and flexural modulus were determined using a three-point bending test. The shock absorption properties were evaluated for a 5200-N impact load using the first peak intensity with a load cell system and the maximum stress with a film sensor system. Results and Conclusions: The flexural strength (74.6 MPa) and flexural modulus (6.3 GPa) of the experimental material with four sheets were significantly greater than those of the 3.2-mm commercial specimens, except for the flexural strength of one product. The first peak intensity (515 N) and maximum stress (2.2 MPa) of the experimental material with four sheets were significantly lower than those of the commercial 3.2-mm specimens, except for one product for each property. These results suggest that the thickness and weight of the FG can be reduced using the experimental fiber-reinforced material.

Concepts: Thermoplastic, Shock absorber, Tensile strength, Pascal, Shock, Material, Young's modulus, Materials science


α-Actinins, a family of critical cytoskeletal actin-binding proteins that usually exist as anti-parallel dimers, play crucial roles in organizing the framework of the cytoskeleton through crosslinking the actin filaments, as well as in focal adhesion maturation. However, the molecular mechanisms underlying its functions are unclear. Here, by mechanical manipulation of single human α-actinin 1 using magnetic tweezers, we determined the mechanical stability and kinetics of the functional domains in α-actinin 1. Moreover, we identified the force-dependence of vinculin binding to α-actinin 1, with the demonstration that force is required to expose the high-affinity binding site for vinculin binding. Further, a role of the α-actinin 1 as molecular shock absorber for the cytoskeleton network is revealed. Our results provide a comprehensive analysis of the force-dependent stability and interactions of α-actinin 1, which sheds important light on the molecular mechanisms underlying its mechanotransmission and mechanosensing functions.

Concepts: Cell biology, Focal adhesion, Shock absorber, Myosin, Vinculin, Cytoskeleton, Actin, Protein


Amongst several processes which have been developed for the production of reliable chalcopyrite Cu(InGa)Se2photovoltaic absorbers, the 2-step metallization-selenization process is widely accepted as being suitable for industrial-scale application. Here we visualize the detailed thermal behavior and reaction pathways of constituent elements during commercially attractive rapid thermal processing of glass/Mo/CuGa/In/Se precursors on the basis of the results of systematic characterization of samples obtained from a series of quenching experiments with set-temperatures between 25 and 550 °C. It was confirmed that the Se layer crystallized and then melted between 250 and 350 °C, completely disappearing at 500 °C. The formation of CuInSe2and Cu(InGa)Se2was initiated at around 450 °C and 550 °C, respectively. It is suggested that pre-heat treatment to control crystallization of Se layer should be designed at 250-350 °C and Cu(InGa)Se2formation from CuGa/In/Se precursors can be completed within a timeframe of 6 min.

Concepts: Shock absorber, Rapid thermal processing, Crystallization, Materials science, Crystal, Phase changes, Chemical engineering, Crystal growth


Suspension systems are designed to reduce shock and vibration exposure. An aftermarket rear-wheel suspension system is now available for manual tilt-in-space wheelchairs.

Concepts: Wheelchairs, Wheelchair, Strut bar, Car handling, Leaf spring, Suspension, Shock absorber


Resistive patch array incorporating with metallic backplane provided an effective way to achieve broadband metamaterial absorbers (MAs) in microwave frequency, and the outstanding construction contributed more flexible and diversified broadband absorption. In this paper, we attempted to load metallic resonators (MRs) to three-dimensional resistive MA to further enhance the lower-frequency absorption performance. Simulation showed that the partial absorption peak was separated to the lower frequency, while the rest of broadband absorption was unaffected. Meanwhile, after combining multi-unit of the proposed MAs, the stair-stepping broadband absorption was also achieved. Finally, three samples were fabricated. The agreements between simulations and experimental results demonstrated that resistive MA loaded with MRs provided an effective way for further enhancement of lower-frequency absorption with almost no change of the absorbing structure and lightweight characteristic. Thus, it was worthy to expect a wide range of applications to emerge inspired from the proposed attempt.

Concepts: Microwave oven, Shock absorber, Electromagnetic radiation, Microwave, Simulation, Optics, Acoustics, Electromagnetism


Surfing with transfemoral knee prosthesis requires flexion of the hip, knee, and ankle and balance between flexibility and stiffness of the prosthetic limb. We report on Mr D, a transfemoral amputee, who wanted to surf again. Case Description and Methods: Technical specifications were based on Mr D’s complaint. The prosthesis is salt water resistant and combines a shock absorber associated with elastic tendons to permit the knee to bend easily and to facilitate eccentric braking. Surfing was observed using videos of movements and subjective analysis of compensations. Findings and Outcomes: Mr D uses this prosthesis for surfing with good results and got back to his former level using compensations. During the takeoff, he cannot shorten his left leg. He makes a circumduction movement to put his leg in front of the board.

Concepts: Human leg, Shock absorber, Prosthetics, C-Leg, Amputation, Prosthesis


Low fresh gas flows (FGFs) decrease the use of anesthetic gases, but increase CO2 absorbent usage. CO2 absorbent usage remains poorly quantified. The goal of this study is to determine canister life of 8 commercially available CO2 absorbent prepacks with the Zeus®. Pre-packed CO2 canisters of 8 different brands were tested in vitro: Amsorb Plus, Spherasorb, LoFloSorb, LithoLyme, SpiraLith, SpheraSorb, Drägersorb 800+, Drägersorb Free, and CO2ntrol. CO2 (160 mL min- 1) flowed into the tip of a 2 L breathing bag that was ventilated with a tidal volume of 500 mL, a respiratory rate of 10/min, and an I:E ratio of 1:1 using the controlled mechanical ventilation mode of the Zeus® (Dräger, Lubeck, Germany). In part I, canister life of 5 canisters each of 2 different lots of each brand was determined with a 350 mL min- 1 FGF. Canister life is the time it takes for the inspired CO2 concentration (FICO2) to rise to 0.5%. In part II, canister life was measured accross a FGF range of 0.25 to 4 L min- 1 for Drägersorb 800+ (2 lots) and SpiraLith (1 lot). In part III, the calculated canister life per 100 g fresh granule content of the different brands was compared between the Zeus and (previously published data for) the Aisys. In vitro canister life of prefilled CO2 absorber canisters differed between brands, and depended on the amount of CO2 absorbent and chemical composition. Canister life expressed as FCU0.5 (the fraction of the canister used per hour) was proportional to FGF over 0.2-2 L min-1 range only, but was non-linear with higher FGF: FCU0.5 was larger than expected with FGF > 2 L min-1, and even with FGF > minute ventilation FCU0.5 did not become zero, indicating some CO2 was being absorbed. Canister life on a per weight basis of the same brand is higher with the Zeus than the Aisys. Canister life of prefilled CO2 absorber canisters differs between brands. The FCU0.5-FGF relationship is not linear across the entire FGF range. Canister life of prepacks of the same brand for the Zeus and Aisys differs, the exact etiology of which is probably multifactorial, and may include differences in the absolute amount of absorbent and different rebreathing characteristics of the machines.

Concepts: Brand, Canister, Carbon dioxide, Graphic design, Respiratory physiology, Shock absorber, Mechanical ventilation


Nurses and other NHS staff have become ‘shock absorbers’ for a health service under chronic strain, according to a report.

Concepts: Shock, Health care, Medicine, Shock absorber


Hedgehogs are agile climbers, scaling trees and plants to heights exceeding 10m while foraging insects. Hedgehog spines (a.k.a. quills) provide fall protection by absorbing shock and could offer insights for the design of lightweight, material-efficient, impact-resistant structures. There has been some study of flexural properties of hedgehog spines, but an understanding of how this keratinous biological material is affected by various temperature and relative humidity treatments, or how spine color (multicolored vs. white) affects mechanics, is lacking. To bridge this gap in the literature, we use three-point bending to analyze the effect of temperature, humidity, spine color, and their interactions on flexural strength and modulus of hedgehog spines. We also compare specific strength and stiffness of hedgehog spines to conventional engineered materials. We find hedgehog spine flexural properties can be finely tuned by modifying environmental conditioning parameters. White spines tend to be stronger and stiffer than multicolored spines. Finally, for most temperature and humidity conditioning parameters, hedgehog spines are ounce for ounce stronger than 201 stainless steel rods of the same diameter but as pliable as styrene rods with a slightly larger diameter. This unique combination of strength and elasticity makes hedgehog spines exemplary shock absorbers, and a suitable reference model for biomimicry.

Concepts: Humidity, Stiffness, Specific strength, Hedgehog, Relative humidity, Shock absorber, Physical quantities, Materials science


The intervertebral discs (IVDs) provide unique flexibility to the spine and exceptional shock absorbing properties under impact. The inner core of the IVD, the nucleus pulposus (NP) is responsible for this adaptive behavior. Herein we evaluate an injectable, self-healing dynamic hydrogel (DH) based on gold(I)-thiolate/disulfide (Au-S/SS) exchange as NP replacement on ex-vivo models. For the first time we report the application of dynamic covalent hydrogels inside biological tissues. The dynamic exchange between Au-S species and disulfide bonds (SS) resulted in self-healing ability and frequency-dependent stiffness of the hydrogel, which was also confirmed in spine motion segments. Injection of DH into nucleotomized IVDs restored the biomechanical properties of intact IVDs, including the stiffening effect observed at increasing frequencies. DH has the potential to counteract IVD degeneration associated with high frequency vibrations. The persistence of DH in the IVD space following cyclic high-frequency loading, confirmed by tomography after mechanical testing, suggests that this material would have long life span as NP replacement material.

Concepts: High frequency, Shock absorber, The Spine, Spinal disc herniation, Frequency, Intervertebral disc, Shock, Disulfide bond