SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Sexual reproduction

212

Social networks based on dyadic relationships are fundamentally important for understanding of human sociality. However, we have little understanding of the dynamics of close relationships and how these change over time. Evolutionary theory suggests that, even in monogamous mating systems, the pattern of investment in close relationships should vary across the lifespan when post-weaning investment plays an important role in maximising fitness. Mobile phone data sets provide a unique window into the structure and dynamics of relationships. We here use data from a large mobile phone dataset to demonstrate striking sex differences in the gender-bias of preferred relationships that reflect the way the reproductive investment strategies of both sexes change across the lifespan, i.e. women’s shifting patterns of investment in reproduction and parental care. These results suggest that human social strategies may have more complex dynamics than previously assumed and a life-history perspective is crucial for understanding them.

Concepts: Natural selection, Male, Reproduction, Evolution, Sex, Interpersonal relationship, Human sexuality, Sexual reproduction

206

Parthenogenesis is a natural form of asexual reproduction in which embryos develop in the absence of fertilisation. Most commonly found in plants and invertebrate organisms, an increasing number of vertebrate species have recently been reported employing this reproductive strategy. Here we use DNA genotyping to report the first demonstration of an intra-individual switch from sexual to parthenogenetic reproduction in a shark species, the zebra shark Stegostoma fasciatum. A co-housed, sexually produced daughter zebra shark also commenced parthenogenetic reproduction at the onset of maturity without any prior mating. The demonstration of parthenogenesis in these two conspecific individuals with different sexual histories provides further support that elasmobranch fishes may flexibly adapt their reproductive strategy to environmental circumstances.

Concepts: Reproduction, Organism, Life, Vertebrate, Asexual reproduction, Sexual reproduction, Shark, Parthenogenesis

189

Cliff sides are extreme habitats, often sheltering a rich and unique flora. One example is the dioecious herb Borderea chouardii (Dioscoreaceae), which is a Tertiary, tropical relict, occurring only on two adjacent vertical cliffs in the world. We studied its reproductive biology, which in some aspects is extreme, especially the unusual double mutualistic role of ants as both pollinators and dispersers. We made a 2-year pollination census and four years of seed-dispersal experiments, recording flower visitors and dispersal rates. Fruit and seed set, self-sowing of seeds, seedling recruitment, and fate of seedlings from seeds sowed by different agents were scored over a period of 17 years. The ants Lasius grandis and L. cinereus were the main pollinators, whereas another ant Pheidole pallidula dispersed seeds. Thus ants functioned as double mutualists. Two thirds of all new seedlings came from self-sown seeds, and 1/3 was dispersed by ants, which gathered the seeds with their oil-rich elaiosome. Gravity played a minor role to dispersal. Both ant dispersal and self-sowing resulted in the same survival rate of seedlings. A double mutualism is a risky reproductive strategy, but B. chouardii buffers that by an unusual long-term demographic stability (some individuals exceed 300 years in lifespan) and its presence in a climatically very stable habitat, inaccessible to large herbivores. Such a combination of traits and habitat properties may explain the persistence of this relict species.

Concepts: Reproduction, Plant, Symbiosis, Seed, Plant morphology, Plant reproduction, Sexual reproduction, Mutualism

155

Does the European Society of Human Reproduction and Embryology-European Society for Gynaecological Endoscopy (ESHRE-ESGE) classification of female genital tract malformations significantly increase the frequency of septate uterus diagnosis relative to the American Society for Reproductive Medicine (ASRM) classification?

Concepts: Human, Male, Reproduction, Female, Reproductive system, Female reproductive system, Clitoris, Sexual reproduction

149

Superovulation induced by exogenous gonadotropin treatment (PMSG/hCG) increases the number of available oocytes in humans and animals. However, Superovulatory PMSG/hCG treatment is known to affect maternal environment, and these effects may result from PMSG/hCG treatment-induced oxidative stress. 2-Cys peroxiredoxins (2-Cys Prxs) act as antioxidant enzymes that protect cells from oxidative stress induced by various exogenous stimuli. Therefore, the objective of this study was to test the hypothesis that repeated PMSG/hCG treatment induces 2-Cys Prx expression and overoxidation in the reproductive tracts of female mice. Immunohistochemistry and western blotting analyses further demonstrated that, after PMSG/hCG treatment, the protein expression levels of 2-Cys Prxs increased most significantly in the ovaries, while that of Prx1 was most affected by PMSG/hCG stimulation in all tissues of the female reproductive tract. Repeated PMSG/hCG treatment eventually leads to 2-Cys Prxs overoxidation in all reproductive organs of female mice, and the abundance of the 2-Cys Prxs-SO2/3 proteins reported here supports the hypothesis that repeated superovulation induces strong oxidative stress and damage to the female reproductive tract. Our data suggest that excessive oxidative stress caused by repeated PMSG/hCG stimulation increases 2-Cys Prxs expression and overoxidation in the female reproductive organs. Intracellular 2-Cys Prx therefore plays an important role in maintaining the reproductive organ environment of female mice upon exogenous gonadotropin treatment.

Concepts: Human, Reproduction, Molecular biology, Antioxidant, Organ, Reproductive system, Sexual reproduction, Sex organ

113

There is clear evidence for sublethal effects of neonicotinoid insecticides on non-target ecosystem service-providing insects. However, their possible impact on male insect reproduction is currently unknown, despite the key role of sex. Here, we show that two neonicotinoids (4.5 ppb thiamethoxam and 1.5 ppb clothianidin) significantly reduce the reproductive capacity of male honeybees (drones), Apis mellifera Drones were obtained from colonies exposed to the neonicotinoid insecticides or controls, and subsequently maintained in laboratory cages until they reached sexual maturity. While no significant effects were observed for male teneral (newly emerged adult) body mass and sperm quantity, the data clearly showed reduced drone lifespan, as well as reduced sperm viability (percentage living versus dead) and living sperm quantity by 39%. Our results demonstrate for the first time that neonicotinoid insecticides can negatively affect male insect reproductive capacity, and provide a possible mechanistic explanation for managed honeybee queen failure and wild insect pollinator decline. The widespread prophylactic use of neonicotinoids may have previously overlooked inadvertent contraceptive effects on non-target insects, thereby limiting conservation efforts.

Concepts: Male, Reproduction, Insect, Honey bee, Beekeeping, Insecticide, Sexual reproduction, Queen bee

45

Facultative parthenogenesis, seen in many animal phyla, is a reproductive strategy in which females are able to generate offspring when mating partners are unavailable. In some subsocial and eusocial insects, parthenogenesis is often more prevalent than sexual reproduction. However, little is known about how social cooperation is linked to the promotion of parthenogenesis. The domiciliary cockroach Periplaneta americana is well-suited to addressing this issue as this species belongs to the superfamily Blattoidea, which diverged into eusocial termites and shows facultative parthenogenesis.

Concepts: Human, Male, Reproduction, Asexual reproduction, Sexual reproduction, Cockroach, Parthenogenesis, Termite

45

In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.

Concepts: Gene, Natural selection, Reproduction, Evolution, Honey bee, Beekeeping, Ant, Sexual reproduction

45

Regret and anticipated regret enhance decision quality by helping people avoid making and repeating mistakes. Some of people’s most intense regrets concern sexual decisions. We hypothesized evolved sex differences in women’s and men’s experiences of sexual regret. Because of women’s higher obligatory costs of reproduction throughout evolutionary history, we hypothesized that sexual actions, particularly those involving casual sex, would be regretted more intensely by women than by men. In contrast, because missed sexual opportunities historically carried higher reproductive fitness costs for men than for women, we hypothesized that poorly chosen sexual inactions would be regretted more by men than by women. Across three studies (Ns = 200, 395, and 24,230), we tested these hypotheses using free responses, written scenarios, detailed checklists, and Internet sampling to achieve participant diversity, including diversity in sexual orientation. Across all data sources, results supported predicted psychological sex differences and these differences were localized in casual sex contexts. These findings are consistent with the notion that the psychology of sexual regret was shaped by recurrent sex differences in selection pressures operating over deep time.

Concepts: Scientific method, Natural selection, Male, Reproduction, Evolution, Gender, Sex, Sexual reproduction

35

While many skeletal biomineralized genera are described from Ediacaran (635-541 million years ago, Ma) strata, none have been suggested to have an affinity above the Porifera-Cnidaria metazoan grade. Here, we reinterpret the widespread terminal Ediacaran (approx. 550-541 Ma) sessile goblet-shaped Namacalathus as a triploblastic eumetazoan. Namacalathus has a stalked cup with radially symmetrical cross section, multiple lateral lumens and a central opening. We show that the skeleton of Namacalathus is composed of a calcareous foliated ultrastructure displaying regular concordant columnar inflections, with a possible inner organic-rich layer. These features point to an accretionary growth style of the skeleton and an affinity with the Lophotrochozoa, more specifically within the Lophophorata (Brachiopoda and Bryozoa). Additionally, we present evidence for asexual reproduction as expressed by regular budding in a bilateral pattern. The interpretation of Namacalathus as an Ediacaran total group lophophorate is consistent with an early radiation of the Lophophorata, as known early Cambrian representatives were sessile, mostly stalked forms, and in addition, the oldest known calcareous Brachiopoda (early Cambrian Obolellida) and Bryozoa (Ordovician Stenolaemata) possessed foliated ultrastructures.

Concepts: Reproduction, Asexual reproduction, Sexual reproduction, Sponge, Cambrian explosion, Bryozoa, Ordovician, Lophotrochozoa