SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Semiconductor device fabrication

141

GaN-based light-emitting diodes (LEDs) have been widely accepted as highly efficient solid-state light sources capable of replacing conventional incandescent and fluorescent lamps. However, their applications are limited to small devices because their fabrication process is expensive as it involves epitaxial growth of GaN by metal-organic chemical vapor deposition (MOCVD) on single crystalline sapphire wafers. If a low-cost epitaxial growth process such as sputtering on a metal foil can be used, it will be possible to fabricate large-area and flexible GaN-based light-emitting displays. Here we report preparation of GaN films on nearly lattice-matched flexible Hf foils using pulsed sputtering deposition (PSD) and demonstrate feasibility of fabricating full-color GaN-based LEDs. It was found that introduction of low-temperature (LT) grown layers suppressed the interfacial reaction between GaN and Hf, allowing the growth of high-quality GaN films on Hf foils. We fabricated blue, green, and red LEDs on Hf foils and confirmed their normal operation. The present results indicate that GaN films on Hf foils have potential applications in fabrication of future large-area flexible GaN-based optoelectronics.

Concepts: Semiconductor, Chemical vapor deposition, Wafer, Light-emitting diode, Semiconductor device fabrication, Epitaxy, Gallium nitride, Black light

94

Thermal chemical vapour deposition techniques for graphene fabrication, while promising, are thus far limited by resource-consuming and energy-intensive principles. In particular, purified gases and extensive vacuum processing are necessary for creating a highly controlled environment, isolated from ambient air, to enable the growth of graphene films. Here we exploit the ambient-air environment to enable the growth of graphene films, without the need for compressed gases. A renewable natural precursor, soybean oil, is transformed into continuous graphene films, composed of single-to-few layers, in a single step. The enabling parameters for controlled synthesis and tailored properties of the graphene film are discussed, and a mechanism for the ambient-air growth is proposed. Furthermore, the functionality of the graphene is demonstrated through direct utilization as an electrode to realize an effective electrochemical genosensor. Our method is applicable to other types of renewable precursors and may open a new avenue for low-cost synthesis of graphene films.

Concepts: Electrochemistry, Carbon nanotube, Chemical vapor deposition, Silicon carbide, Metaphysics, Semiconductor device fabrication, Vacuum, Physical vapor deposition

33

Owing to its high carrier mobility, conductivity, flexibility and optical transparency, graphene is a versatile material in micro- and macroelectronics. However, the low density of electrochemically active defects in graphene synthesized by chemical vapour deposition limits its application in biosensing. Here, we show that graphene doped with gold and combined with a gold mesh has improved electrochemical activity over bare graphene, sufficient to form a wearable patch for sweat-based diabetes monitoring and feedback therapy. The stretchable device features a serpentine bilayer of gold mesh and gold-doped graphene that forms an efficient electrochemical interface for the stable transfer of electrical signals. The patch consists of a heater, temperature, humidity, glucose and pH sensors and polymeric microneedles that can be thermally activated to deliver drugs transcutaneously. We show that the patch can be thermally actuated to deliver Metformin and reduce blood glucose levels in diabetic mice.

Concepts: Enzyme, Insulin, Diabetes mellitus, Optical fiber, Obesity, Blood sugar, Silicon carbide, Semiconductor device fabrication

29

Semiconductor heterostructures provide a powerful platform to engineer the dynamics of excitons for fundamental and applied interests. However, the functionality of conventional semiconductor heterostructures is often limited by inefficient charge transfer across interfaces due to the interfacial imperfection caused by lattice mismatch. Here we demonstrate that MoS2/WS2 heterostructures consisting of monolayer MoS2 and WS2 stacked in the vertical direction can enable equally efficient interlayer exciton relaxation regardless the epitaxy and orientation of the stacking. This is manifested by a similar two orders of magnitude decrease of photoluminescence intensity in both epitaxial and non-epitaxial MoS2/WS2 heterostructures. Both heterostructures also show similarly improved absorption beyond the simple super-imposition of the absorptions of monolayer MoS2 and WS2. Our result indicates that 2D heterostructures bear significant implications for the development of photonic devices, in particular those requesting efficient exciton separation and strong light absorption, such as solar cells, photodetectors, modulators, and photocatalysts. It also suggests that the simple stacking of dissimilar 2D materials with random orientations is a viable strategy to fabricate complex functional 2D heterostructures, which would show similar optical functionality as the counterpart with perfect epitaxy.

Concepts: Photon, Optics, Solar cell, Absorption, Wafer, Exciton, Semiconductor device fabrication, Heterojunction

28

We report the epitaxial growth of defect-free zinc-blende structured InAs nanowires on GaAs{111}(B) substrates using palladium catalysts in a metal-organic chemical vapor deposition reactor. Through detailed morphological, structural, and chemical characterizations using electron microscopy, it is found that these defect-free InAs nanowires grew along the ⟨1̅1̅0⟩ directions with four low-energy {111} faceted side walls and {1̅1̅3̅} nanowire/catalyst interfaces. It is anticipated that these defect-free ⟨1̅1̅0⟩ nanowires benefit from the fact that the nanowire/catalyst interfaces does not contain the {111} planes, and the nanowire growth direction is not along the ⟨111⟩ directions. This study provides an effective approach to control the crystal structure and quality of epitaxial III-V nanowires.

Concepts: Enzyme, Structure, Catalysis, Catalytic converter, Solid, Chemical vapor deposition, Semiconductor device fabrication, Epitaxy

27

Three-dimensional focused ion beam/scanning electron microscopy (FIB/SEM tomography) is currently an important technique to characterize in 3D a complex semiconductor device or a specific failure. However, the industrial context demands low turnaround time making the technique less useful. To make it more attractive, the following study focuses on a specific methodology going from sample preparation to the final volume reconstruction to reduce the global time analysis while keeping reliable results. The FIB/SEM parameters available will be first analyzed to acquire a relevant dataset in a reasonable time (few hours). Then, a new alignment strategy based on specific alignment marks [using tetraethoxylisane (TEOS) and Pt deposition] is proposed to improve the volume reconstruction speed. These points combined represent a considerable improvement regarding the reliability of the results and the time consumption (gain of factor 3). This method is then applied to various case studies illustrating the benefits of the FIB/SEM tomography technique such as the precise identification of the origin of 3D defects, or the capability to perform a virtual top-down deprocessing on soft material not possible by any mechanical solution.

Concepts: Electron, Electron microscope, Fundamental physics concepts, Semiconductor, Transmission electron microscopy, Scanning electron microscope, Semiconductor device fabrication, Focused ion beam

24

Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconductor industry standard complementary metal-oxide semiconductor logic circuit fabrication processes, this strategy extracts a patterned sacrificial silicon layer through hundreds of millions of nanoscale vent holes on each chip by gas-phase Xenon difluoride etching. Using single-molecule fluorescence imaging, we demonstrate these sacrificial nanofluidic chips can function to controllably and completely stretch lambda DNA in a two-dimensional nanofluidic network comprising channels and pillars. The flexible nanofluidic structure design, wafer-scale fabrication, single-digit nanometre channels, reliable fluidic sealing and low thermal budget make our strategy a potentially universal approach to integrating functional planar nanofluidic systems with logic circuits for lab-on-a-chip applications.

Concepts: Oxygen, Nanotechnology, Integrated circuit, Semiconductor, Transistor, CMOS, Semiconductor device fabrication, Logic gate

23

It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), photoresist (PR), and anti-reflective coating (ARC). The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching (DRIE) is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

Concepts: Definition, Pattern, Semiconductor device fabrication, Etching, Lithography, Reactive-ion etching, Deep reactive-ion etching, Printmaking

21

Multi-junction solar cells made by assembling semiconductor materials with different bandgap energies have hold the record conversion efficiencies for many years and are currently approaching 50%. Theoretical efficiency limits make use of optimum designs with the right lattice constant-bandgap energy combination, which requires a 1.0-1.15 eV material lattice-matched to GaAs/Ge. Nevertheless, the lack of suitable semiconductor materials is hindering the achievement of the predicted efficiencies, since the only candidates were up to now complex quaternary and quinary alloys with inherent epitaxial growth problems that degrade carrier dynamics. Here we show how the use of strain-balanced GaAsSb/GaAsN superlattices might solve this problem. We demonstrate that the spatial separation of Sb and N atoms avoids the ubiquitous growth problems and improves crystal quality. Moreover, these new structures allow for additional control of the effective bandgap through the period thickness and provide a type-II band alignment with long carrier lifetimes. All this leads to a strong enhancement of the external quantum efficiency under photovoltaic conditions with respect to bulk layers of equivalent thickness. Our results show that GaAsSb/GaAsN superlattices with short periods are the ideal (pseudo)material to be integrated in new GaAs/Ge-based multi-junction solar cells that could approach the theoretical efficiency limit.

Concepts: Semiconductor, Solar cell, Wafer, Germanium, Multijunction photovoltaic cell, Diode, Semiconductor device fabrication, Band gap

18

Integrating different semiconductor materials into an epitaxial device structure offers additional degrees of freedom to select for optimal material properties in each layer. However, interfaces between materials with different valences (i.e. III-V, II-VI and IV semiconductors) can be difficult to form with high quality. Using ZnSe/GaAs as a model system, we explore the use of ultraviolet (UV) illumination during heterovalent interface growth by molecular beam epitaxy as a way to modify the interface properties. We find that UV illumination alters the mixture of chemical bonds at the interface, permitting the formation of Ga-Se bonds that help to passivate the underlying GaAs layer. Illumination also helps to reduce defects in the ZnSe epilayer. These results suggest that moderate UV illumination during growth may be used as a way to improve the optical properties of both the GaAs and ZnSe layers on either side of the interface.

Concepts: Chemical substance, Integrated circuit, Gallium arsenide, Semiconductor, Wafer, Molecular beam epitaxy, Semiconductor device fabrication, Indium phosphide