Discover the most talked about and latest scientific content & concepts.

Concept: Seismic wave


To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques.

Concepts: Geology, Earthquake, Earthquake engineering, Seismic wave, Seismology, Fault, Reflection seismology, Seismometer


Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.

Concepts: Scientific method, Wave, Earthquake, Seismic wave, Seismology, Geophysics, Seismometer, Love wave


Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

Concepts: Perception, Europe, Liquid, Earthquake, Dam, Earthquake engineering, Seismic wave, Seismology


A recent dramatic increase in seismicity in the midwestern United States may be related to increases in deep wastewater injection. Here, we demonstrate that areas with suspected anthropogenic earthquakes are also more susceptible to earthquake-triggering from natural transient stresses generated by the seismic waves of large remote earthquakes. Enhanced triggering susceptibility suggests the presence of critically loaded faults and potentially high fluid pressures. Sensitivity to remote triggering is most clearly seen in sites with a long delay between the start of injection and the onset of seismicity and in regions that went on to host moderate magnitude earthquakes within 6 to 20 months. Triggering in induced seismic zones could therefore be an indicator that fluid injection has brought the fault system to a critical state.

Concepts: United States, Earthquake, Earthquake engineering, Seismic wave, Seismology, Epicenter, Seismometer, Love wave


Large earthquakes trigger very small earthquakes globally during passage of the seismic waves and during the following several hours to days, but so far remote aftershocks of moment magnitude M ≥ 5.5 have not been identified, with the lone exception of an M = 6.9 quake remotely triggered by the surface waves from an M = 6.6 quake 4,800 kilometres away. The 2012 east Indian Ocean earthquake that had a moment magnitude of 8.6 is the largest strike-slip event ever recorded. Here we show that the rate of occurrence of remote M ≥ 5.5 earthquakes (>1,500 kilometres from the epicentre) increased nearly fivefold for six days after the 2012 event, and extended in magnitude to M ≤ 7. These global aftershocks were located along the four lobes of Love-wave radiation; all struck where the dynamic shear strain is calculated to exceed 10(-7) for at least 100 seconds during dynamic-wave passage. The other M ≥ 8.5 mainshocks during the past decade are thrusts; after these events, the global rate of occurrence of remote M ≥ 5.5 events increased by about one-third the rate following the 2012 shock and lasted for only two days, a weaker but possibly real increase. We suggest that the unprecedented delayed triggering power of the 2012 earthquake may have arisen because of its strike-slip source geometry or because the event struck at a time of an unusually low global earthquake rate, perhaps increasing the number of nucleation sites that were very close to failure.

Concepts: English-language films, Indian Ocean, Earthquake, Tsunami, Seismic wave, Fault, Epicenter, Aftershock


Double seismic zones are two-layered distributions of intermediate-depth earthquakes that provide insight into the thermomechanical state of subducting slabs. We present new precise hypocenters of intermediate-depth earthquakes in the Tonga subduction zone obtained using data from local island-based, ocean-bottom, and global seismographs. The results show a downdip compressional upper plane and a downdip tensional lower plane with a separation of about 30 km. The double seismic zone in Tonga extends to a depth of about 300 km, deeper than in any other subduction system. This is due to the lower slab temperatures resulting from faster subduction, as indicated by a global trend toward deeper double seismic zones in colder slabs. In addition, a line of high seismicity in the upper plane is observed at a depth of 160 to 280 km, which shallows southward as the convergence rate decreases. Thermal modeling shows that the earthquakes in this “seismic belt” occur at various pressures but at a nearly constant temperature, highlighting the important role of temperature in triggering intermediate-depth earthquakes. This seismic belt may correspond to regions where the subducting mantle first reaches a temperature of ~500°C, implying that metamorphic dehydration of mantle minerals in the slab provides water to enhance faulting.

Concepts: Earth, Geology, Earthquake, Seismic wave, Seismology, Subduction, Outer Plane, Seismometer


Urban seismology has become an active research field in the recent years, both with seismological objectives, as obtaining better microzonation maps in highly populated areas, and with engineering objectives, as the monitoring of traffic or the surveying of historical buildings. We analyze here the seismic records obtained by a broad-band seismic station installed in the ICTJA-CSIC institute, located near the center of Barcelona city. Although this station was installed to introduce visitors to earth science during science fairs and other dissemination events, the analysis of the data has allowed to infer results of interest for the scientific community. The main results include the evidence that urban seismometers can be used as a easy-to-use, robust monitoring tool for road traffic and subway activity inside the city. Seismic signals generated by different cultural activities, including rock concerts, fireworks or football games, can be detected and discriminated from its seismic properties. Beside the interest to understand the propagation of seismic waves generated by those rather particular sources, those earth shaking records provide a powerful tool to gain visibility in the mass media and hence have the opportunity to present earth sciences to a wider audience.

Concepts: Geography, Science, Geology, Earthquake, Seismic wave, Seismology, Geophysics, Seismometer


The subduction zone in Northern Chile is a well identified seismic gap that last ruptured in 1877. The Mw 8.1 Iquique earthquake of 1 April 2014 broke a highly coupled portion of this gap. To understand the seismicity preceding this event, we studied the location and mechanisms of the foreshocks and computed GPS time series at stations located on-shore. Seismicity off-shore Iquique started to increase in January 2014. After 16 March several Mw > 6 events occurred near the low coupled zone. These events migrated northward for about 50 km until the 1 April earthquake occurred. On 16 March on-shore cGPS stations detected a westward motion that we model as a slow slip event situated in the same area where the mainshock occurred.

Concepts: Earth, Geology, Earthquake, Earthquake engineering, Seismic wave, Seismology, Subduction, Pacific Ring of Fire


Ambient seismic noise correlations are widely used for high-resolution surface-wave imaging of Earth’s lithosphere. Similar observations of the seismic body waves that propagate through the interior of Earth would provide a window into the deep Earth. We report the observation of the mantle transition zone through noise correlations of P waves as they are reflected by the discontinuities associated with the top [410 kliometers (km)] and the bottom (660 km) of this zone. Our data demonstrate that high-resolution mapping of the mantle transition zone is possible without using earthquake sources.

Concepts: Earth, Lithosphere, Seismic wave, Mantle, Crust, Asthenosphere, Seismology, Structure of the Earth


The Mw 5.5 earthquake that struck South Korea in November 2017 was one of the largest and most damaging events in this country over the last century. Its proximity to an Enhanced Geothermal Systems site, where high pressure hydraulic injection had been performed during the previous two years, raises the possibility that this earthquake was anthropogenic. We have combined seismological and geodetic analyses to characterize the mainshock and its largest aftershocks, constrain the geometry of this seismic sequence and shed light on its casual factors. According to our analysis it seems plausible that the occurrence of this earthquake was influenced by these industrial activities. Finally we found that the earthquake transferred static stress to larger nearby faults, potentially increasing the seismic hazard in the area.

Concepts: Mathematical analysis, Japan, Earthquake, Earthquake engineering, Real analysis, Seismic wave, Seismology, Aftershock