Discover the most talked about and latest scientific content & concepts.

Concept: Seed


BACKGROUND: Both competitive and facilitative interactions between species play a fundamental role in shaping natural communities. A recent study showed that competitive interactions between plants can be mediated by some alternative signalling channel, extending beyond those channels studied so far (i.e. chemicals, contact and light). Here, we tested whether such alternative pathway also enables facilitative interactions between neighbouring plant species. Specifically, we examined whether the presence of a ‘good’ neighbouring plant like basil positively influenced the germination of chilli seeds when all known signals were blocked. For this purpose, we used a custom-designed experimental set-up that prevented above- and below-ground contact and blocked chemical and light-mediated signals normally exchange by plants. RESULTS: We found that seed germination was positively enhanced by the presence of a ‘good’ neighbour, even when the known signalling modalities were blocked, indicating that light, touch or chemical signals may not be indispensible for different plant species to sense each other’s presence. CONCLUSIONS: We propose that this alternative signalling modality operates as a general indicator of the presence of heterospecifics, enabling seeds to detect and identify a neighbour prior to engaging in a more finely-tuned, but potentially more costly, response.

Concepts: Embryo, Plant, Fruit, Seed, Plant morphology, Germination, Seedling, Love Thy Neighbour


Cliff sides are extreme habitats, often sheltering a rich and unique flora. One example is the dioecious herb Borderea chouardii (Dioscoreaceae), which is a Tertiary, tropical relict, occurring only on two adjacent vertical cliffs in the world. We studied its reproductive biology, which in some aspects is extreme, especially the unusual double mutualistic role of ants as both pollinators and dispersers. We made a 2-year pollination census and four years of seed-dispersal experiments, recording flower visitors and dispersal rates. Fruit and seed set, self-sowing of seeds, seedling recruitment, and fate of seedlings from seeds sowed by different agents were scored over a period of 17 years. The ants Lasius grandis and L. cinereus were the main pollinators, whereas another ant Pheidole pallidula dispersed seeds. Thus ants functioned as double mutualists. Two thirds of all new seedlings came from self-sown seeds, and 1/3 was dispersed by ants, which gathered the seeds with their oil-rich elaiosome. Gravity played a minor role to dispersal. Both ant dispersal and self-sowing resulted in the same survival rate of seedlings. A double mutualism is a risky reproductive strategy, but B. chouardii buffers that by an unusual long-term demographic stability (some individuals exceed 300 years in lifespan) and its presence in a climatically very stable habitat, inaccessible to large herbivores. Such a combination of traits and habitat properties may explain the persistence of this relict species.

Concepts: Reproduction, Plant, Symbiosis, Seed, Plant morphology, Plant reproduction, Sexual reproduction, Mutualism


The apple is the most common and culturally important fruit crop of temperate areas. The elucidation of its origin and domestication history is therefore of great interest. The wild Central Asian species Malus sieversii has previously been identified as the main contributor to the genome of the cultivated apple (Malus domestica), on the basis of morphological, molecular, and historical evidence. The possible contribution of other wild species present along the Silk Route running from Asia to Western Europe remains a matter of debate, particularly with respect to the contribution of the European wild apple. We used microsatellite markers and an unprecedented large sampling of five Malus species throughout Eurasia (839 accessions from China to Spain) to show that multiple species have contributed to the genetic makeup of domesticated apples. The wild European crabapple M. sylvestris, in particular, was a major secondary contributor. Bidirectional gene flow between the domesticated apple and the European crabapple resulted in the current M. domestica being genetically more closely related to this species than to its Central Asian progenitor, M. sieversii. We found no evidence of a domestication bottleneck or clonal population structure in apples, despite the use of vegetative propagation by grafting. We show that the evolution of domesticated apples occurred over a long time period and involved more than one wild species. Our results support the view that self-incompatibility, a long lifespan, and cultural practices such as selection from open-pollinated seeds have facilitated introgression from wild relatives and the maintenance of genetic variation during domestication. This combination of processes may account for the diversification of several long-lived perennial crops, yielding domestication patterns different from those observed for annual species.

Concepts: Seed, Apple, Central Asia, Kazakhstan, Malus, Malus sieversii, Malus sylvestris, Apples


This study presents a novel way of enhancing plant growth through the use of a non-petroleum based product. We report here that exposing either roots or seeds of multicellular plants to extremely low concentrations of dissolved hydrogen sulfide at any stage of life causes statistically significant increases in biomass including higher fruit yield. Individual cells in treated plants were smaller (∼13%) than those of controls. Germination success and seedling size increased in, bean, corn, wheat, and pea seeds while time to germination decreases. These findings indicated an important role of H2S as a signaling molecule that can increase the growth rate of all species yet tested. The increased crop yields reported here has the potential to effect the world’s agricultural output.

Concepts: Plant, Pea, Fruit, Seed, Legume, Plant morphology, Germination, Yield


Human-mediated dispersal is known as an important driver of long-distance dispersal for plants but underlying mechanisms have rarely been assessed. Road corridors function as routes of secondary dispersal for many plant species but the extent to which vehicles support this process remains unclear. In this paper we quantify dispersal distances and seed deposition of plant species moved over the ground by the slipstream of passing cars. We exposed marked seeds of four species on a section of road and drove a car along the road at a speed of 48 km/h. By tracking seeds we quantified movement parallel as well as lateral to the road, resulting dispersal kernels, and the effect of repeated vehicle passes. Median distances travelled by seeds along the road were about eight meters for species with wind dispersal morphologies and one meter for species without such adaptations. Airflow created by the car lifted seeds and resulted in longitudinal dispersal. Single seeds reached our maximum measuring distance of 45 m and for some species exceeded distances under primary dispersal. Mathematical models were fit to dispersal kernels. The incremental effect of passing vehicles on longitudinal dispersal decreased with increasing number of passes as seeds accumulated at road verges. We conclude that dispersal by vehicle airflow facilitates seed movement along roads and accumulation of seeds in roadside habitats. Dispersal by vehicle airflow can aid the spread of plant species and thus has wide implications for roadside ecology, invasion biology and nature conservation.

Concepts: Plant, Transport, Seed, Walking, Vehicle, Automobile, The Road, Seed dispersal


Background and AimsIntraspecific reproductive differentiation into sexual and apomictic cytotypes of differing ploidy is a common phenomenon. However, mechanisms enabling the maintenance of both reproductive modes and integrity of cytotypes in sympatry are as yet poorly understood. This study examined the association of sexual and apomictic seed formation with ploidy as well as gene flow towards sexuals within populations of purely polyploid Potentilla puberula.MethodsThe study is based on 22 populations representing various combinations of five polyploid cytotypes (tetraploid-octoploid) from East Tyrol, Austria. Embryo ploidy and the endosperm/embryo ploidy ratio obtained by a flow cytometric seed screen were used to infer reproductive modes of seed formation and to calculate the male and female genomic contributions to the embryo and endosperm. Self-incompatibility (SI) patterns were assessed and a new indirect approach was used to test for the occurrence of intercytotype matings based on the variation in the male genomic contribution to sexually derived embryos on the level of developed seed.Key ResultsTetraploids formed seeds almost exclusively via sexual reproduction, whereas penta- to octoploids were preferentially apomictic. Non-random distribution of reproductive modes within maternal plants further revealed a tendency to separate the sexual from the apomictic mode among individuals. Self-incompatibility of sexuals indicated functionality of the gametophytic SI system despite tetraploidy of the nuclear genome. We found no indication for significant cross-fertilization of tetraploids by the high polyploids.ConclusionsThe study revealed a rare example of intraspecific differentiation into sexual and apomictic cytotypes at the polyploid level. The integrity of the sexual tetraploids was maintained due to reproductive isolation from the apomictic higher polyploids. Functionality of the gametophytic SI system suggested that the tetraploids are functional diploids.

Concepts: Genetics, Reproduction, Genome, Seed, Asexual reproduction, Rosaceae, Plant reproduction, Parthenogenesis


Many insects with long-proboscid mouthparts are among the pollinators of seed plants. Several cases of the long-proboscid pollination mode are known between fossil insects (e.g., true flies, scorpionflies, and lacewings) and various extinct gymnosperm lineages, beginning in the Early Permian and increasing during the Middle Jurassic to Early Cretaceous. However, details on the morphology of lacewing proboscides and the relevant pollination habit are largely lacking. Here we report on three lacewing species that belong to two new genera and a described genus from mid-Cretaceous (Albian-Cenomanian) amber of Myanmar. All these species possess relatively long proboscides, which are considered to be modified from maxillary and labial elements, probably functioning as a temporary siphon for feeding on nectar. Remarkably, these proboscides range from 0.4-1.0 mm in length and are attributed to the most diminutive ones among the contemporary long-proboscid insect pollinators. Further, they clearly differ from other long-proboscid lacewings which have a much longer siphon. The phylogenetic analysis indicates that these Burmese long-proboscid lacewings belong to the superfamily Psychopsoidea but cannot be placed into any known family. The present findings represent the first description of the mouthparts of long-proboscid lacewings preserved in amber and highlight the evolutionary diversification of the ancient plant-pollinator interactions.

Concepts: Evolution, Species, Insect, Plant, Seed, Cretaceous, Insects, Endopterygota


Starch is the main storage carbohydrate in higher plants. Although several enzymes and regulators for starch biosynthesis have been characterized, a complete regulatory network for starch synthesis in cereal seeds remains elusive. Here, we report the identification and characterization of the rice Brittle1 (OsBT1) gene, which is expressed specifically in the developing endosperm. The osbt1 mutant showed a white-core endosperm and a significantly lower grain weight than the wild-type. The formation and development of compound starch granules in osbt1 was obviously defective: the amyloplast was disintegrated at early developmental stages and the starch granules were disperse and not compound in the endosperm cells in the centre region of osbt1 seeds. The total starch content and amylose content was decreased and the physicochemical properties of starch were altered. Moreover, the degree of polymerization (DP) of amylopectin in osbt1 was remarkably different from that of wild-type. Map-based cloning of OsBT1 indicated that it encodes a putatively ADP-glucose transporter. OsBT1 coded protein localizes in the amyloplast envelope membrane. Furthermore, the expression of starch synthesis related genes was also altered in the osbt1 mutant. These findings indicate that OsBT1 plays an important role in starch synthesis and the formation of compound starch granules.

Concepts: Gene, Gene expression, Plant, Starch, Cereal, Seed, Rice, Amylose


The use of plant-derived foods in the prevention, treatment, and management of metabolic diseases especially diabetes has gained prominence; this has been associated with their physicochemical properties. This study was conducted to compare the proximate, functional, mineral, and antinutrient composition of the fermented seeds, the defatted seeds, and the protein isolate from Parkia biglobosa seeds. The results showed that the fermented, defatted, and protein isolate varied in composition within the parameters studied. The proximate analysis revealed that the protein isolate had the highest ash (6.0%) and protein (59.4%) as well as the lowest fat (5.7%) and moisture (5.1%) content when compared to the fermented and defatted samples. In like manner, the functional properties of the protein isolate were relatively better than those of the fermented and defatted samples, with oil absorption capacity of 4.2% and emulsion capacity of 82%. The magnesium and zinc content of the protein isolate were significantly higher when compared with the fermented and defatted samples, while a negligible amount of antinutrient was present in all the samples, with the protein isolate having the lowest quantity. The overall data suggest that the protein isolate had better proximate, mineral, functional, and antinutrient properties when compared to the fermented and defatted samples. Therefore, the synergistic effect of all these components present in the protein isolate from P. biglobosa seed in association with its low carbohydrate and high protein/ash contents could play a vital role in the management of diabetes and its associated complications.

Concepts: Metabolism, Nutrition, Glucose, Physical chemistry, Cultural studies, Carbohydrate, Seed, Parkia


High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.

Concepts: DNA, Gene, Genetics, Classical genetics, Quantitative trait locus, Genetic linkage, Rapeseed, Seed