Discover the most talked about and latest scientific content & concepts.

Concept: Secretory pathway


The Golgi apparatus has attracted intense attentions due to its fascinating morphology and vital role as the pivot of cellular secretory pathway since its discovery. However, its complex structure at the molecular level remains elusive due to limited approaches. In this study, the structure of Golgi apparatus, including the Golgi stack, cisternal structure, relevant tubules and vesicles, were directly visualized by high-resolution atomic force microscope. We imaged both sides of Golgi apparatus membranes and revealed that the outer leaflet of Golgi membranes is relatively smooth while the inner membrane leaflet is rough and covered by dense proteins. With the treatment of methyl-β-cyclodextrin and Triton X-100, we confirmed the existence of lipid rafts in Golgi apparatus membrane, which are mostly in the size of 20 nm -200 nm and appear irregular in shape. Our results may be of significance to reveal the structure-function relationship of the Golgi complex and pave the way for visualizing the endomembrane system in mammalian cells at the molecular level.

Concepts: Cell, Cell membrane, Golgi apparatus, Organelle, Endoplasmic reticulum, Protein targeting, Endomembrane system, Secretory pathway


Protein traffic is of critical importance for normal cellular physiology. In eukaryotes, spherical transport vesicles move proteins and lipids from one internal membrane-bound compartment to another within the secretory pathway. The process of directing each individual protein to a specific destination (known as protein sorting) is a crucial event that is intrinsically linked to vesicle biogenesis. In this review, we summarize the principles of cargo sorting by the vesicle traffic machinery and consider the diverse mechanisms by which cargo proteins are selected and captured into different transport vesicles. We focus on the first two compartments of the secretory pathway: the endoplasmic reticulum and Golgi. We provide an overview of the complexity and diversity of cargo adaptor function and regulation, focusing on recent mechanistic discoveries that have revealed insight into protein sorting in cells.

Concepts: Protein, Cell, Golgi apparatus, Organelle, Endoplasmic reticulum, Lysosome, Protein targeting, Secretory pathway


The Golgi complex has a central role in the intracellular sorting of secretory proteins. Anterograde transport through the Golgi has been explained by the movement of Golgi cisternae, known as cisternal maturation. Because this explanation is now appreciated to be incomplete, interest has developed in understanding tubules that connect the Golgi cisternae. Here we show that the coat protein I (COPI) complex sorts anterograde cargoes into these tubules in human cells. Moreover, the small GTPase CDC42 regulates bidirectional Golgi transport by targeting the dual functions of COPI in cargo sorting and carrier formation. CDC42 also directly imparts membrane curvature to promote COPI tubule formation. Our findings further reveal that COPI tubular transport complements cisternal maturation in explaining how anterograde Golgi transport is achieved, and that bidirectional COPI transport is modulated by environmental cues through CDC42.

Concepts: Cell, Cell membrane, Golgi apparatus, Organelle, Secretion, Endoplasmic reticulum, Protein targeting, Secretory pathway


The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.

Concepts: Protein, Cell nucleus, RNA, Ribosome, Endoplasmic reticulum, Chaperone, Protein targeting, Secretory pathway


We have designed a membrane ‘staple’, which consists of membrane-anchored repeats of the trans-aggregating FM domain that face the lumen of the secretory pathway. In the presence of the disaggregating drug these proteins transit the secretory pathway. When the drug is removed these proteins form electron-dense plaques which we term staples. Unexpectedly, when initially positioned within the cis-Golgi, staples remained at the cis face of the Golgi even after many hours. By contrast, soluble FM-aggregates transited the Golgi. Staples and soluble aggregates placed in cis-Golgi cisternae therefore have different fates. Whereas the membrane staples are located in the flattened, stacked central regions of the cisternae, the soluble aggregates are in the dilated rims. This suggests that while the cisternae are static on the time scale of protein traffic, the dilated rims are mobile and progress in the cis → trans direction via a mechanism that we term ‘Rim Progression’. DOI:

Concepts: Cell, Cell membrane, Golgi apparatus, Organelle, Endoplasmic reticulum, Lumen, Protein targeting, Secretory pathway


The Golgi complex consists of serially stacked membrane cisternae which can be further categorized into sub-Golgi regions, including the cis-Golgi, medial-Golgi, trans-Golgi and trans-Golgi network. Cellular functions of the Golgi are determined by the characteristic distribution of its resident proteins. The spatial resolution of conventional light microscopy is too low to resolve sub-Golgi structure or cisternae. Thus, the immuno-gold electron microscopy is a method of choice to localize a protein at the sub-Golgi level. However, the technique and instrument are beyond the capability of most cell biology labs. We describe here our recently developed super-resolution method called Golgi protein localization by imaging centers of mass (GLIM) to systematically and quantitatively localize a Golgi protein. GLIM is based on standard fluorescence labeling protocols and conventional wide-field or confocal microscopes. It involves the calibration of chromatic-shift aberration of the microscopic system, the image acquisition and the post-acquisition analysis. The sub-Golgi localization of a test protein is quantitatively expressed as the localization quotient. There are four main advantages of GLIM; it is rapid, based on conventional methods and tools, the localization result is quantitative, and it affords ~ 30 nm practical resolution along the Golgi axis. Here we describe the detailed protocol of GLIM to localize a test Golgi protein.

Concepts: Protein, Cell, Cell membrane, Golgi apparatus, Secretion, Endoplasmic reticulum, Protein targeting, Secretory pathway


Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial-Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl-CoA Binding Domain Containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co-expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase Activating Protein (GAP), to a large multi-protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b-GAP at the medial-Golgi. This article is protected by copyright. All rights reserved.

Concepts: Protein, Protein structure, Cell, Collagen, Golgi apparatus, Endoplasmic reticulum, Protein targeting, Secretory pathway


Although trans-activating transcription (TAT)-peptide functionalized nanoparticle/polymer/liposome is widely used for cellular transfection applications, the multivalency (number of attached peptide per particle) effect on cell uptake mechanism and subcellular targeting performance is largely unexplored. Here we show that multivalency of nanoparticle controls the cellular interaction, cellular entry/exit mechanism and subcellular targeting performance. We have synthesized TAT peptide functionalized quantum dot (QD) of 30-35 nm hydrodynamic diameter with varied multivalency from 10 to 75 (e.g. QD(TAT)10, QD(TAT)20, QD(TAT)40, QD(TAT)75) and studied the role of multivalency in endocytosis and subcellular trafficking. We found that both low and high multivalent nanoparticles enter into cell predominantly via lipid-raft mediated endocytosis but the higher multivalency of 40 and 75 induces vesicular trapping followed by exocytosis within 12 h. In contrast lower multivalency of 10 and 20 offers efficient trafficking towards perinuclear region and Golgi apparatus. This work shows the functional role of nanoparticle multivalency in cellular uptake mechanism and importance of lower multivalency for efficient subcellular targeting.

Concepts: Protein, Cell, Cell membrane, Golgi apparatus, Secretion, Endoplasmic reticulum, Secretory pathway, Exocytosis


In this study, we attempted to explore the function of three uncharacterized mammalian homologs of yeast Yip domain family proteins-YIPF6, a homolog of Yip1p, and YIPF1 and YIPF2, which are homologs of Yif1p. Immunofluorescence staining revealed that YIPF1, YIPF2, and YIPF6 mainly localize in the medial-/trans-Golgi and also partially in the trans-Golgi network (TGN). On treatment with brefeldin A (BFA), the homologs co-migrated partly with medial-/trans-Golgi markers and also with a TGN marker in earlier time point, but finally redistributed within cytoplasmic punctate structures that were distinct from medial-/trans-Golgi and the TGN markers. YIPF6 formed a stable complex separately with YIPF1 and YIPF2, and knockdown of YIPF6 reduced YIPF1 and YIPF2 levels. These results suggest that YIPF6 forms complexes with YIPF1 and YIPF2 for their stable expression and localization within the Golgi apparatus. Knockdown experiments showed that YIPF1 and YIPF2, by contrast, are not necessary for the expression and localization of YIPF6. The structure of the Golgi apparatus and its disassembly after BFA treatment were not significantly affected by the knockdown of YIPF1, YIPF2, or YIPF6. However, reassembly of the Golgi apparatus after the removal of BFA was markedly delayed by the knockdown of YIPF1 and YIPF2, but not by that of YIPF6. These results strongly suggest that free YIPF6 after disassociating with YIPF1 and YIPF2 interferes with the reassembly of the Golgi apparatus. Knockdown of YIPF1 and YIPF2, but not that of YIPF6, also reduced intracellular glycans in HT-29 cells. Thus, we confirmed that YIPF1, YIPF2, and YIPF6 play a significant role in supporting normal glycan synthesis.

Concepts: Cell, Cell membrane, Golgi apparatus, Secretion, Endoplasmic reticulum, Lysosome, Secretory pathway, Camillo Golgi


This study aims to investigate colleters' secretory function, on cellular level, in Rubiaceae species from contrasting environments looking to explore the association between secretion and environment. We collected samples from eight species of Rubiaceae growing in forest and savanna having standard-type colleters with diverse histochemistry (hydrophilic, lipophilic and mixed secretions) and processed for both conventional and cytochemical study under transmission electron microscopy (TEM). The standard colleters, although similar in morphology and anatomy, exhibited marked differences on cellular level, especially in the abundance and topology of Golgi bodies, endoplasmic reticulum and plastids when comparing forest and savanna species. These differences were clearly aligned with the chemical nature of the secretions they produce, with predominance of hydrophilic secretions in forest species and lipophilic or mixed secretions in savanna species. The combination of methods in electron microscopy revealed the sites of synthesis and intracellular compartmentation of substances, the mechanisms of their secretion from the protoplast and confirmed the involvement of the outer walls of the epithelial cells in the elimination of exudates to the gland surface. Our study suggests a potential environment-associated plasticity of the secretory cells of standard-type colleters in modulating their secretory function performance.

Concepts: Cell, Golgi apparatus, Secretion, Endoplasmic reticulum, Transmission electron microscopy, Gland, Protein targeting, Secretory pathway