Discover the most talked about and latest scientific content & concepts.

Concept: Seaweed


Understanding the effects of environmental change on the distribution and abundance of strongly interacting organisms, such as intertidal macroalgae and their grazers, needs a thorough knowledge of their underpinning ecological relationships. Control of grazer-plant interactions is bi-directional on northwestern European coasts: grazing by limpets structures populations of macroalgae, while macroalgae provide habitat and food for limpets. Scottish shores dominated by the macroalga Fucus vesiculosus support lower densities and larger sizes of limpets Patella vulgata than shores with less Fucus. These patterns may be due to differences in inter-size-class competitive interactions of limpets among shores with different covers of Fucus. To examine this model, densities of small and large limpets were manipulated in plots with and without Fucus. Amounts of biofilm were measured in each plot. The presence of Fucus increased survival but hindered growth of small (15 mm TL) limpets, which were negatively affected by the presence of large limpets (31 mm TL). In contrast, large limpets were not affected by the presence of Fucus or of small limpets. This suggests the occurrence of asymmetric inter-size-class competition, which was influenced by the presence of macroalgae. Macroalgae and increased densities of limpets did not influence amounts of biofilm. Our findings highlight the role of interactions among organisms in generating ecological responses to environmental change.

Concepts: Algae, Biology, Fucus vesiculosus, Fucus, Seaweed, Intertidal zone, Limpet, Patella vulgata


A comprehensive review on the chemistry of Spongia sp. is here presented, together with the biological activity of the isolated compounds. The compounds are grouped in sesquiterpene quinones, diterpenes, C21 and other linear furanoterpenes, sesterterpenes, sterols (including secosterols), macrolides and miscellaneous compounds. Among other reports we include studies on the intraspecific diversity of a Mediterranean species, compounds isolated from associated sponge and nudibranch and compounds isolated from S. zimocca and the red seaweed Laurentia microcladia. Under biological activity a table of the reported biological activities of the various compounds and the biological screening of extracts are described. The present review covers the literature from 1971 to 2015.

Concepts: Present, Photosynthesis, Species, Report, Activity, Sponge, Seaweed, Bryozoa


Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae.

Concepts: Algae, Carbon dioxide, Coral, Coral reef, Scleractinia, Aragonite, Seaweed, Ocean acidification


Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.

Concepts: Algae, Biodiversity, Ecology, Coral reef, Climate, Forest, Kelp, Seaweed


Degradation of natural habitats due to urbanization is a major cause of biodiversity loss. Anthropogenic impacts can drive phase shifts from productive, complex ecosystems to less desirable, less diverse systems that provide fewer services. Macroalgae are the dominant habitat-forming organisms on temperate coastlines, providing habitat and food to entire communities. In recent decades, there has been a decline in macroalgal cover along some urbanised shorelines, leading to a shift from diverse algal forests to more simple turf algae or barren habitats. Phyllospora comosa, a major habitat forming macroalga in south-eastern Australia, has disappeared from the urban shores of Sydney. Its disappearance is coincident with heavy sewage outfall discharges along the metropolitan coast during 1970s and 1980s. Despite significant improvements in water-quality since that time, Phyllospora has not re-established. We experimentally transplanted adult Phyllospora into two rocky reefs in the Sydney metropolitan region to examine the model that Sydney is now suitable for the survival and recruitment of Phyllospora and thus assess the possibility of restoring Phyllospora back onto reefs where it was once abundant. Survival of transplanted individuals was high overall, but also spatially variable: at one site most individuals were grazed, while at the other site survival was similar to undisturbed algae and procedural controls. Transplanted algae reproduced and recruitment rates were higher than in natural populations at one experimental site, with high survival of new recruits after almost 18 months. Low supply and settlement success of propagules in the absence of adults and herbivory (in some places) emerge as three potential processes that may have been preventing natural re-establishment of this alga. Understanding of the processes and interactions that shape this system are necessary to provide ecologically sensible goals and the information needed to successfully restore these underwater forests.

Concepts: Algae, Biodiversity, Habitat, Plant, Coral reef, Ecosystem, Kelp, Seaweed


Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral-seaweed-herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence.

Concepts: Algae, Photosynthesis, Plant, Induced demand, Seaweed, Herbivory, Plant defense against herbivory, Sargassum


The name “cosmeceuticals” is derived from “cosmetics and pharmaceuticals”, indicating that a specific product contains active ingredients. Marine algae have gained much importance in cosmeceutical product development due to their rich bioactive compounds. In the present review, marine algal compounds (phlorotannins, sulfated polysaccharides and tyrosinase inhibitors) have been discussed toward cosmeceutical application. In addition, atopic dermatitis and the possible role of matrix metalloproteinase (MMP) in skin-related diseases have been explored extensively for cosmeceutical products. The proper development of marine algae compounds will be helpful in cosmeceutical product development and in the development of the cosmeceutical industry.

Concepts: Algae, Cosmetics, Matrix metalloproteinase, Active ingredient, Food and Drug Administration, Seaweed, Algaculture, Cosmeceutical


In this study, we prepared seven polysaccharides extracted from five algae including one brown alga Saccharina japonica, one red alga Porphyra haitanensis and three green algae Codium fragile, Enteromorpha linza and Bryopsis plumose. The chemical composition and capability of moisture-absorption and moisture-retention were investigated in comparison with those of hyaluronic acid (HA). The low molecular weight polysaccharides extracted from brown seaweed exhibited the highest moisture-absorption and moisture-retention abilities of all of the polysaccharides studied and performed better than HA. The relationships between chemical composition (including sulfated groups, monosaccharide, and molecular weight) and the functions of polysaccharides were also studied. We found the sulfated group was a main active site for moisture-absorption and moisture-retention abilities. These abilities were also related to molecular weight; with the exception of the low molecular weight polysaccharide extracted from red seaweed, lower molecular weight improved moisture-absorption and moisture-retention abilities.

Concepts: Algae, Plant, Water, Brown algae, Green algae, Seaweed, Red algae, Nori


Seaweeds are an excellent source of bioactive compounds and therefore the use of sustainable and food compatible extraction methods such as enzyme- (EAE) and ultrasound-assisted extraction were applied on Sargassum muticum, Osmundea pinnatifida and Codium tomentosum. Extracts were evaluated for proximate characterization and biological properties. Higher extraction yields were observed for C. tomentosum EAE (48-62%; p<0.05 for Cellulase and Viscozyme), followed by O. pinnatifida (49-55%; p<0.05 except Alcalase) and S. muticum (26-31%; p<0.05). Sargassum muticum extracts presented the highest nitrogen (25±2 mg/glyoph extract) and total phenolics (261±37 gcathecol equiv/glyoph extract) contents whereas higher sugars (78±14 mgglucose equiv/glyoph extract) including sulfated polysaccharides (44±8 mgNa2SO4 acid/glyoph extract) contents characterized O. pinnatifida extracts. Higher effect on hydroxyl-radical scavenging activity (35-50%) was observed for all extracts whereas S. muticum Alcalase and C. tomentosum Cellulase extracts exhibited higher prebiotic activity than fructooligosaccharides. O. pinnatifida and C. tomentosum EAE showed inhibitory potential against α-glucosidase (38-49%).

Concepts: Glucose, Extract, Seaweed, Sargassum


The chemical composition of three edible seaweeds (Codium capitatum, Hypnea spicifera and Sargassum elegans) and two inedible seaweeds (Halimeda cuneata and Spyridia hypnoides) from the Indian Ocean along the KwaZulu-Natal East Coast, South Africa were investigated as a function of seasonal variation. The proximate compositions of the edible seaweeds were determined. In edible seaweeds, the moisture level ranged from 85.4 to 89.5%, protein from 6.1 to 11.8%, lipids from 7.5 to 13.1% and carbohydrates from 37.8 to 71.9%. Elemental concentrations in the five studied seaweeds varied significantly with season (P < 0.05) with mean elemental concentrations (in µg g(-1), dry weight) being: Ca (29 260), Mg (6 279), Fe (1 086), Cu (145.9), Mn (48.32), As (24.29), Zn (15.65), Ni (9.83), Cr (5.78), Pb (4.84), Co (0.87) and Se (0.86). The concentrations of As were particularly high in S. elegans, ranging from 94.70 ± 6.6 µg g(-1) in winter to 65.10 ± 2.3 µg g(-1) in summer. Hierarchical cluster analysis showed similar distribution of elements in edible seaweeds which was dissimilar to that in inedible seaweeds. This study suggests that edible macro alga, C. capitatum and H. spicifera, could be potential sources of most essential nutrients and may contribute positively to the diet without posing the risk of adverse health effects due to low concentrations of toxic elements. However, due to high levels of As in S. elegans, its consumption should be moderated to reduce dietary exposure to this toxic element.

Concepts: Cluster analysis, Nutrition, Africa, Chemical element, South Africa, Indian Ocean, Season, Seaweed