Discover the most talked about and latest scientific content & concepts.

Concept: Sea urchin


Nodal and BMP signals are important for establishing left-right (LR) asymmetry in vertebrates. In sea urchins, Nodal signaling prevents the formation of the rudiment on the right side. However, the opposing pathway to Nodal signaling during LR axis establishment is not clear. Here, we revealed that BMP signaling is activated in the left coelomic pouch, specifically in the veg2 lineage, but not in the small micromeres. By perturbing BMP activities, we demonstrated that BMP signaling is required for activating the expression of the left-sided genes and the formation of the left-sided structures. On the other hand, Nodal signals on the right side inhibit BMP signaling and control LR asymmetric separation and apoptosis of the small micromeres. Our findings show that BMP signaling is the positive signal for left-sided development in sea urchins, suggesting that the opposing roles of Nodal and BMP signals in establishing LR asymmetry are conserved in deuterostomes.

Concepts: Left-wing politics, Animal, Signal, Right-wing politics, Political spectrum, Sea urchin, Urchin, Sea otter


We present the global phylogeography of the black sea urchin Arbacia lixula, an amphi-Atlantic echinoid with potential to strongly impact shallow rocky ecosystems. Sequences of the mitochondrial cytochrome c oxidase gene of 604 specimens from 24 localities were obtained, covering most of the distribution area of the species, including the Mediterranean and both shores of the Atlantic. Genetic diversity measures, phylogeographic patterns, demographic parameters and population differentiation were analysed. We found high haplotype diversity but relatively low nucleotide diversity, with 176 haplotypes grouped within three haplogroups: one is shared between Eastern Atlantic (including Mediterranean) and Brazilian populations, the second is found in Eastern Atlantic and the Mediterranean and the third is exclusively from Brazil. Significant genetic differentiation was found between Brazilian, Eastern Atlantic and Mediterranean regions, but no differentiation was found among Mediterranean sub-basins or among Eastern Atlantic sub-regions. The star-shaped topology of the haplotype network and the unimodal mismatch distributions of Mediterranean and Eastern Atlantic samples suggest that these populations have suffered very recent demographic expansions. These expansions could be dated 94-205 kya in the Mediterranean, and 31-67 kya in the Eastern Atlantic. In contrast, Brazilian populations did not show any signature of population expansion. Our results indicate that all populations of A. lixula constitute a single species. The Brazilian populations probably diverged from an Eastern Atlantic stock. The present-day genetic structure of the species in Eastern Atlantic and the Mediterranean is shaped by very recent demographic processes. Our results support the view (backed by the lack of fossil record) that A. lixula is a recent thermophilous colonizer which spread throughout the Mediterranean during a warm period of the Pleistocene, probably during the last interglacial. Implications for the possible future impact of A. lixula on shallow Mediterranean ecosystems in the context of global warming trends must be considered.

Concepts: DNA, Demography, Mediterranean Sea, Atlantic Ocean, Brazil, Sea urchin, Haplotype, Black Sea


Sea urchins are dominant members of rocky temperate reefs around the world. They often occur in cavities within the rock, and fit so tightly, it is natural to assume they sculpted these “pits.” However, there are no experimental data demonstrating they bore pits. If they do, what are the rates and consequences of bioerosion to nearshore systems? We sampled purple sea urchins, Strongylocentrotus purpuratus, from sites with four rock types, three sedimentary (two sandstones and one mudstone) and one metamorphic (granite). A year-long experiment showed urchins excavated depressions on sedimentary rocks in just months. The rate of pit formation varied with rock type and ranged from <5 yr for medium-grain sandstone to >100 yr for granite. In the field, there were differences in pit size and shapes of the urchins (height:diameter ratio). The pits were shallow and urchins flatter at the granite site, and the pits were deeper and urchins taller at the sedimentary sites. Although overall pit sizes were larger on mudstone than on sandstone, urchin size accounted for this difference. A second, short-term experiment, showed the primary mechanism for bioerosion was ingestion of the substratum. This experiment eliminated potential confounding factors of the year-long experiment and yielded higher bioerosion rates. Given the high densities of urchins, large amounts of rock can be converted to sediment over short time periods. Urchins on sandstone can excavate as much as 11.4 kg m-2 yr-1. On a broader geographic scale, sediment production can exceed 100 t ha-1 yr-1, and across their range, their combined bioerosion is comparable to the sediment load of many rivers. The phase shift between urchin barrens and kelp bed habitats in the North Pacific is controlled by the trophic cascade of sea otters. By limiting urchin populations, these apex predators also may indirectly control a substantial component of coastal rates of bioerosion.

Concepts: Sediment, Sedimentary rock, Igneous rock, Rock, Petrology, Sea urchin, Metamorphic rock, Shale


Calcium silicate hydrate (C-S-H) is the binder in concrete, the most used synthetic material in the world. The main weakness of concrete is the lack of elasticity and poor flexural strength considerably limiting its potential, making reinforcing steel constructions necessary. Although the properties of C-S-H could be significantly improved in organic hybrids, the full potential of this approach could not be reached because of the random C-S-H nanoplatelet structure. Taking inspiration from a sea urchin spine with highly ordered nanoparticles in the biomineral mesocrystal, we report a bioinspired route toward a C-S-H mesocrystal with highly aligned C-S-H nanoplatelets interspaced with a polymeric binder. A material with a bending strength similar to nacre is obtained, outperforming all C-S-H-based materials known to date. This strategy could greatly benefit future construction processes because fracture toughness and elasticity of brittle cementitious materials can be largely enhanced on the nanoscale.

Concepts: Materials science, Construction, Sea urchin, Concrete, Reinforced concrete, Rebar, Fireproofing, Prestressed concrete


Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.

Concepts: Protein, Nutrition, Calcium carbonate, Sea urchin, Urchin, Calcite, Aragonite, Echinoidea


Ciguatera fish poisoning (CFP), a disease caused by consuming fish that have accumulated ciguatoxins (CTXs) in their tissue, is regarded as the most prevalent form of intoxication in French Polynesia. Recently, the Australes, one of the least affected archipelago until the early 1980s, has shown a dramatic increase in its incidence rates in 2009 with unusual CFP cases. In the present work, potential health hazards associated with the proliferation of various marine phytoplankton species and the consumption of fish and marine invertebrates highly popular among local population were assessed in three Australes islands: Raivavae, Rurutu and Rapa. Extracts from the marine dinoflagellates Gambierdiscus, Ostreospis and mat-forming cyanobacteria as well as fish, giant clams and sea urchin samples were examined for the presence of CTXs and palytoxin (PLTX) by using the neuroblastoma cell-based assay (CBA-N2a). Cytotoxic responses observed with both standards (Pacific CTX-3C and PLTX) and targeted marine products indicate that CBA-N2a is a robust screening tool, with high sensitivity and good repeatability and reproducibility. In Rurutu and Raivavae islands, our main findings concern the presence of CTX-like compounds in giant clams and sea urchins, suggesting a second bio-accumulation route for CFP toxins in the ciguatera food chain. In Rapa, the potential CFP risk from Gambierdiscus bloom and fish was confirmed for the first time, with levels of CTXs found above the consumer advisory level of 0.01 ng Pacific CTX-1B g(-1) of flesh in three fish samples. However, despite the presence of trace level of PLTX in Ostreopsis natural assemblages of Rapa, no sign of PLTX accumulation is yet observed in tested fish samples. Because this multi-toxinic context is likely to emerge in most French Polynesian islands, CBA-N2a shows great potential for future applications in the algal- and toxin-based field monitoring programmes currently on hand locally.

Concepts: Pacific Ocean, Algal bloom, Dinoflagellate, Sea urchin, French Polynesia, Polynesia, Austral Islands, Ciguatera


Mass mortalities in natural populations, particularly those that leave few survivors over large spatial areas, may cause long-term ecological perturbations. Yet mass mortalities may remain undocumented or poorly described due to challenges in responding rapidly to unforeseen events, scarcity of baseline data, and difficulties in quantifying rare or patchily distributed species, especially in remote or marine systems. Better chronicling the geographic pattern and intensity of mass mortalities is especially critical in the face of global changes predicted to alter regional disturbance regimes. Here, we couple replicated post-mortality surveys with preceding long-term surveys and historical data to describe a rapid and severe mass mortality of rocky shore invertebrates along the north-central California coast of the northeastern Pacific Ocean. In late August 2011, formerly abundant intertidal populations of the purple sea urchin (Strongylocentrotus purpuratus, a well-known ecosystem engineer), and the predatory six-armed sea star (Leptasterias sp.) were functionally extirpated from ~100 km of coastline. Other invertebrates, including the gumboot chiton (Cryptochiton stelleri) the ochre sea star (Pisaster ochraceus), and subtidal populations of purple sea urchins also exhibited elevated mortality. The pattern and extent of mortality suggest the potential for long-term population, community, and ecosystem consequences, recovery from which may depend on the different dispersal abilities of the affected species.

Concepts: Population, Sea urchin, Urchin, Strongylocentrotus purpuratus, Asteroidea, Echinoidea, Chiton, Gumboot chiton


Echinoids, or sea urchins, are rare in the Palaeozoic fossil record, and thus the details regarding the early diversification of crown group echinoids are unclear. Here we report on the earliest probable crown group echinoid from the fossil record, recovered from Permian (Roadian-Capitanian) rocks of west Texas, which has important implications for the timing of the divergence of crown group echinoids. The presence of apophyses and rigidly sutured interambulacral areas with two columns of plates indicates this species is a cidaroid echinoid. The species, Eotiaris guadalupensis, n. sp. is therefore the earliest stem group cidaroid. The occurrence of this species in Roadian strata pushes back the divergence of cidaroids and euechinoids, the clades that comprise all living echinoids, to at least 268.8 Ma, ten million years older than the previously oldest known cidaroid. Furthermore, the genomic regulation of development in echinoids is amongst the best known, and this new species informs the timing of large-scale reorganization in echinoid gene regulatory networks that occurred at the cidaroid-euechinoid divergence, indicating that these changes took place by the Roadian stage of the Permian.

Concepts: DNA, Evolution, Phylogenetics, Clade, Sea urchin, Urchin, Sea otter, Crown group


Global change, such as warming and ocean acidification, and local anthropogenic disturbances, such as eutrophication, can have profound impacts on marine organisms. However, we are far from being able to predict the outcome of multiple interacting disturbances on seagrass communities. Herbivores are key in determining plant community structure and the transfer of energy up the food web. Global and local disturbances may alter the ecological role of herbivory by modifying leaf palatability (i.e. leaf traits) and consequently, the feeding patterns of herbivores. This study evaluates the main and interactive effects of factors related to global change (i.e. elevated temperature, lower pH levels and associated ocean acidification) and local disturbance (i.e. eutrophication through ammonium enrichment) on a broad spectrum of leaf traits using the temperate seagrass Cymodocea nodosa, including structural, nutritional, biomechanical and chemical traits. The effect of these traits on the consumption rates of the generalist herbivore Paracentrotus lividus (purple sea urchin) is evaluated. The three disturbances of warming, low pH level and eutrophication, alone and in combination, increased the consumption rate of seagrass by modifying all leaf traits. Leaf nutritional quality, measured as nitrogen content, was positively correlated to consumption rate. In contrast, a negative correlation was found between feeding decisions by sea urchins and structural, biomechanical and chemical leaf traits. In addition, a notable accomplishment of this work is the identification of phenolic compounds not previously reported for C. nodosa. Our results suggest that global and local disturbances may trigger a major shift in the herbivory of seagrass communities, with important implications for the resilience of seagrass ecosystems.

Concepts: Animal, Nitrogen, PH, Ocean, Herbivore, Sea urchin, Urchin, Ocean acidification


Selection by consumers has led to the evolution of a vast array of defenses in animals and plants. These defenses include physical structures, behaviors, and chemical signals that mediate interactions with predators. Some of the strangest defensive structures in nature are the globiferous pedicellariae of the echinoderms. These are small venomous appendages with jaws and teeth that cover the test of many sea urchins and sea stars. In this study, we report a unique use of these defensive structures by the collector sea urchin Tripneustes gratilla. In both the laboratory and the field, globiferous pedicellariae were unpalatable to fish consumers. When subject to simulated predator attack, sea urchins released a cloud of pedicellaria heads into the water column. Flume experiments established the presence of a waterborne cue associated with this release of pedicellariae that is deterrent to predatory fish. These novel results add to our understanding of how the ecosystem-shaping sea urchin T. gratilla is able to reach high densities in many reef habitats, with subsequent impacts on algal cover.

Concepts: Fish, Predation, Animal, Sea urchin, Urchin, Echinoderm, Starfish, Echinoderms