Discover the most talked about and latest scientific content & concepts.

Concept: Scombridae


Microplastics are highly bioavailable to marine organisms, either through direct ingestion, or indirectly by trophic transfer from contaminated prey. The latter has been observed for low-trophic level organisms in laboratory conditions, yet empirical evidence in high trophic-level taxa is lacking. In natura studies face difficulties when dealing with contamination and differentiating between directly and indirectly ingested microplastics. The ethical constraints of subjecting large organisms, such as marine mammals, to laboratory investigations hinder the resolution of these limitations. Here, these issues were resolved by analysing sub-samples of scat from captive grey seals (Halichoerus grypus) and whole digestive tracts of the wild-caught Atlantic mackerel (Scomber scombrus) they are fed upon. An enzymatic digestion protocol was employed to remove excess organic material and facilitate visual detection of synthetic particles without damaging them. Polymer type was confirmed using Fourier-Transform Infrared (FTIR) spectroscopy. Extensive contamination control measures were implemented throughout. Approximately half of scat subsamples (48%; n = 15) and a third of fish (32%; n = 10) contained 1-4 microplastics. Particles were mainly black, clear, red and blue in colour. Mean lengths were 1.5 mm and 2 mm in scats and fish respectively. Ethylene propylene was the most frequently detected polymer type in both. Our findings suggest trophic transfer represents an indirect, yet potentially major, pathway of microplastic ingestion for any species whose feeding ecology involves the consumption of whole prey, including humans.

Concepts: Digestive system, Digestion, Apex predator, Pinniped, Gray Seal, Scombridae, Atlantic mackerel, Mackerel


The Deepwater Horizon disaster released more than 636 million L of crude oil into the northern Gulf of Mexico. The spill oiled upper surface water spawning habitats for many commercially and ecologically important pelagic fish species. Consequently, the developing spawn (embryos and larvae) of tunas, swordfish, and other large predators were potentially exposed to crude oil-derived polycyclic aromatic hydrocarbons (PAHs). Fish embryos are generally very sensitive to PAH-induced cardiotoxicity, and adverse changes in heart physiology and morphology can cause both acute and delayed mortality. Cardiac function is particularly important for fast-swimming pelagic predators with high aerobic demand. Offspring for these species develop rapidly at relatively high temperatures, and their vulnerability to crude oil toxicity is unknown. We assessed the impacts of field-collected Deepwater Horizon (MC252) oil samples on embryos of three pelagic fish: bluefin tuna, yellowfin tuna, and an amberjack. We show that environmentally realistic exposures (1-15 µg/L total PAH) cause specific dose-dependent defects in cardiac function in all three species, with circulatory disruption culminating in pericardial edema and other secondary malformations. Each species displayed an irregular atrial arrhythmia following oil exposure, indicating a highly conserved response to oil toxicity. A considerable portion of Gulf water samples collected during the spill had PAH concentrations exceeding toxicity thresholds observed here, indicating the potential for losses of pelagic fish larvae. Vulnerability assessments in other ocean habitats, including the Arctic, should focus on the developing heart of resident fish species as an exceptionally sensitive and consistent indicator of crude oil impacts.

Concepts: Heart, Fish, Petroleum, Polycyclic aromatic hydrocarbon, Tuna, Thunnus, Scombridae, Yellowfin tuna


Spatial variation in growth is a common feature of demersal fish populations which often exist as discrete adult sub-populations linked by a pelagic larval stage. However, it remains unclear whether variation in growth occurs at similar spatial scales for populations of highly migratory pelagic species, such as tuna. We examined spatial variation in growth of albacore Thunnus alalunga across 90° of longitude in the South Pacific Ocean from the east coast of Australia to the Pitcairn Islands. Using length-at-age data from a validated ageing method we found evidence for significant variation in length-at-age and growth parameters (L(∞) and k) between sexes and across longitudes. Growth trajectories were similar between sexes up until four years of age, after which the length-at-age for males was, on average, greater than that for females. Males reached an average maximum size more than 8 cm larger than females. Length-at-age and growth parameters were consistently greater at more easterly longitudes than at westerly longitudes for both females and males. Our results provide strong evidence that finer spatial structure exists within the South Pacific albacore stock and raises the question of whether the scale of their “highly migratory” nature should be re-assessed. Future stock assessment models for South Pacific albacore should consider sex-specific growth curves and spatial variation in growth within the stock.

Concepts: Fish, New Zealand, Pacific Ocean, Polynesia, Tuna, Thunnus, Scombridae, Yellowfin tuna


Tunas are apex predators in marine food webs that can accumulate mercury (Hg) to high concentrations and provide more Hg (∼40%) to the U.S population than any other source. We measured Hg concentrations in 1292 Atlantic bluefin tuna (ABFT, Thunnus thynnus) captured in the Northwest Atlantic from 2004 to 2012. ABFT Hg concentrations and variability increased nonlinearly with length, weight, and age, ranging from 0.25 to 3.15 mg kg(-1), and declined significantly at a rate of 0.018 ± 0.003 mg kg(-1) per year or 19% over an 8-year period from the 1990s to the early 2000s. Notably, this decrease parallels comparably reduced anthropogenic Hg emission rates in North America and North Atlantic atmospheric Hg(0) concentrations during this period, suggesting that recent efforts to decrease atmospheric Hg loading have rapidly propagated up marine food webs to a commercially important species. This is the first evidence to suggest that emission reduction efforts have resulted in lower Hg concentrations in large, long-lived fish.

Concepts: United States, Atlantic Ocean, Europe, Gulf of Mexico, Tuna, Thunnus, Scombridae, Northern bluefin tuna


Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.

Concepts: Atlantic Ocean, Europe, Caribbean Sea, Gulf of Mexico, Tuna, Thunnus, Scombridae, Northern bluefin tuna


The Fukushima Daiichi power station released several radionuclides into the Pacific following the March 2011 earthquake & tsunami. A total of 26 Pacific albacore (Thunnus alalunga) caught off the Pacific Northwest US coast between 2008 and 2012 were analyzed for 137Cs and Fukushima-attributed 134Cs. Both 2011 (2 of 2) and several 2012 (10 of 17) edible tissue samples exhibited increased activity concentrations of 137Cs (234 - 824 mBq/kg wet weight) and 134Cs (18.2 - 356 mBq/kg wet weight). The remaining 2012 samples and all pre-Fukushima (2008-2009) samples possessed lower 137Cs activity concentrations (103 - 272 mBq/kg wet weight) with no detectable 134Cs activity. Age, as indicated by fork length, was a strong predictor for both the presence and concentration of 134Cs (p < 0.001). Notably, many migration-aged fish did not exhibit any 134Cs, suggesting they had not recently migrated near Japan. None of the tested samples would represent a significant change in annual radiation dose if consumed by humans.

Concepts: Japan, Pacific Ocean, Pacific Northwest, Tsunami, Tuna, Thunnus, Scombridae, Portland, Oregon


For ram-gill ventilators such as tunas and mackerels (family Scombridae) and billfishes (families Istiophoridae, Xiphiidae), fusions binding the gill lamellae and filaments prevent gill deformation by a fast and continuous ventilatory stream. This study examines the gills from 28 scombrid and seven billfish species in order to determine how factors such as body size, swimming speed, and the degree of dependence upon ram ventilation influence the site of occurrence and type of fusions. In the family Scombridae there is a progressive increase in the reliance on ram ventilation that correlates with the elaboration of gill fusions. This ranges from mackerels (tribe Scombrini), which only utilize ram ventilation at fast cruising speeds and lack gill fusions, to tunas (tribe Thunnini) of the genus Thunnus, which are obligate ram ventilators and have two distinct fusion types (one binding the gill lamellae and a second connecting the gill filaments). The billfishes appear to have independently evolved gill fusions that rival those of tunas in terms of structural complexity. Examination of a wide range of body sizes for some scombrids and billfishes shows that gill fusions begin to develop at lengths as small as 2.0 cm fork length. In addition to securing the spatial configuration of the gill sieve, gill fusions also appear to increase branchial resistance to slow the high-speed current produced by ram ventilation to distribute flow evenly and optimally to the respiratory exchange surfaces. J. Morphol. 2013. © 2012 Wiley Periodicals, Inc.

Concepts: Nuclear fusion, Gill, Typeface, Shark, Tuna, Thunnus, Scombridae, Billfish


BACKGROUND: Bluefin tunas are highly prized pelagic fish species representing a significant economic resource to fisheries throughout the world. Atlantic bluefin tuna (Thunnus thynnus) populations have significantly declined due to overexploitation. As a consequence of their value and population decline, T. thynnus has been the focus of considerable research effort concerning many aspects of their life history. However, in-depth understanding of T. thynnus reproductive biology is still lacking. Knowledge of reproductive physiology is a very important tool for determining effective fisheries and aquaculture management. Transcriptome techniques are proving powerful and provide novel insights into physiological processes. Construction of a microarray from T. thynnus ESTs sourced from reproductive tissues has provided an ideal platform to study the reproductive physiology of bluefin tunas. The aim of this investigation was to compare transcription profiles from the ovaries and testes of mature T. thynnus to establish sex specific variations underlying their reproductive physiology. RESULTS: Male and females T. thynnus gonad tissues were collected from the wild and histologically staged. Sub-samples of sexually mature tissues were also measured for their mRNA differential expression among the sexes using the custom microarray design BFT 4X44K. A total of 7068 ESTs were assessed for differential expression of which 1273 ESTs were significantly different (p<0.05) with >2 fold change in expression according to sex. Differential expression for 13 of these ESTs was validated with quantitative PCR. These include genes involved in egg envelope formation, hydration, and lipid transport/accumulation more highly expressed in ovaries compared with testis, while genes involved in meiosis, sperm motility and lipid metabolism were more highly expressed in testis compared with ovaries. CONCLUSIONS: This investigation has furthered our knowledge of bluefin tunas reproductive biology by using a contemporary transcriptome approach. Gene expression profiles in T. thynnus sexually mature testes and ovaries were characterized with reference to gametogenesis and potential alternative functions. This report is the first application of microarray technology for bluefin tunas and demonstrates the efficacy by which this technique may be used for further characterization of specific biological aspects for this valuable teleost fish.

Concepts: DNA, Gene expression, Sex, Reproductive system, Tuna, Thunnus, Scombridae, Northern bluefin tuna


Consumption of foods high in biogenic amines leads to an illness known as histamine, or scombrotoxin, poisoning. The illness is commonly associated with consumption of fish with high levels of histamine ( $ 500 ppm). The objective of this study was to determine and compare the heat resistance of five histamine-producing bacteria in irradiated albacore tuna loins. Heat-resistance parameters (D- and z-values) were determined for Morganella morganii, Raoultella planticola, Hafnia alvei, and Enterobacter aerogenes. D- or z-values were not determined for Photobacterium damselae, which was the most heat-sensitive organism in this study. P. damselae declined > 5.9 log CFU/g after a heat treatment of 50°C for 10 min, 54°C for 3 min, and 56°C for 0.5 min. M. morganii was the most heat-resistant histamine-producing bacteria in albacore tuna loins, followed by E. aerogenes, H. alvei, and R. planticola. M. morganii and E. aerogenes had the highest D50°C, 49.7 ± 17.57 and 51.8 ± 17.38 min, respectively. In addition, M. morganii had the highest D-values for all other temperatures (54, 56, and 58°C) tested. D- and zvalues were also determined for M. morganii in skipjack tuna. While no significant (P > 0.05) difference was observed between D54°C and D56°C of M. morganii in either albacore or skipjack tuna, the D58°C (0.4 ± 0.17 min) was significantly lower (P < 0.05) in skipjack than in albacore (0.9 ± 0.24 min). The z-values for all organisms tested were in the range of 3.2 to 3.8°C. This study suggests that heat treatment designed to control M. morganii in tuna loins is sufficient for controlling histamine-producing bacteria in canned-tuna processing environments.

Concepts: Organism, Histamine, Biogenic amine, Commercial fish, Tuna, Scombridae, Yellowfin tuna, Albacore


Abstract Numerous myxozoan cysts (~1 mm) were found in the musculature of blackfin tuna (Thunnus atlanticus) harvested off the Caribbean island of St. Kitts. Myxospores were consistent with quadrate members of the Kudoidae, measuring 8.8 (8.2-9.4) µm wide, 7.3 (6.6-8.3) µm thick and 6.2 (5.8-6.9) µm long with 4 uniform drop-like polar capsules measuring 2.7 (2.2-3.2) µm long and 2.0 (1.7-2.2) µm wide. The 18S small-subunit (SSU) and 28S large-subunit (LSU) ribosomal DNA sequences did not result in direct matches to any published sequences. However, the SSU sequences (1,786 bp) obtained from 6 individual cysts were identical and demonstrated high homology to Kudoa thunni (99.0%) from albacore (Thunnus alalunga). Alternatively, 33 unique sequences were obtained for the LSU (~800 bp), demonstrating 0.1 to 5.0% variability between them, although a majority of these sequences (60%) demonstrated high homology (>99%) to K. thunni. Morphologically, the case isolate was smaller than published descriptions of K. thunni, however, rDNA sequence homology, and phylogenetic placement based on concatenated SSU and LSU rDNA sequences suggests this case isolate and K. thunni are conspecific. To our knowledge this is the first report of K. thunni infection in blackfin tuna from the Caribbean.

Concepts: Caribbean, Tuna, Thunnus, Scombridae, Yellowfin tuna, Saint Kitts, Albacore, Blackfin tuna