Concept: Scientist
237
Facial appearance affects science communication
- OPEN
- Proceedings of the National Academy of Sciences of the United States of America
- Published almost 4 years ago
- Discuss
First impressions based on facial appearance predict many important social outcomes. We investigated whether such impressions also influence the communication of scientific findings to lay audiences, a process that shapes public beliefs, opinion, and policy. First, we investigated the traits that engender interest in a scientist’s work, and those that create the impression of a “good scientist” who does high-quality research. Apparent competence and morality were positively related to both interest and quality judgments, whereas attractiveness boosted interest but decreased perceived quality. Next, we had members of the public choose real science news stories to read or watch and found that people were more likely to choose items that were paired with “interesting-looking” scientists, especially when selecting video-based communications. Finally, we had people read real science news items and found that the research was judged to be of higher quality when paired with researchers who look like “good scientists.” Our findings offer insights into the social psychology of science, and indicate a source of bias in the dissemination of scientific findings to broader society.
227
COMPASS: Navigating the Rules of Scientific Engagement
- OPEN
- PLoS biology
- Published almost 8 years ago
- Discuss
COMPASS shares a decade of experience in helping scientists become effective leaders by navigating a path from outreach to meaningful engagement with journalists and policymakers.
170
Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or “Sagan effect” associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist’s career. There are a variety of approaches that scientists can take to become active in science communication.
148
The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education
- Psychological science
- Published about 3 years ago
- Discuss
The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. Paradoxically, the sex differences in the magnitude of relative academic strengths and pursuit of STEM degrees rose with increases in national gender equality. The gap between boys' science achievement and girls' reading achievement relative to their mean academic performance was near universal. These sex differences in academic strengths and attitudes toward science correlated with the STEM graduation gap. A mediation analysis suggested that life-quality pressures in less gender-equal countries promote girls' and women’s engagement with STEM subjects.
148
Antifungal prophylaxis: why, what and how?
- OPEN
- Future microbiology
- Published about 5 years ago
- Discuss
41st Annual Meeting of the European Society for Blood and Marrow Transplantation (EBMT 2015), Istanbul, Turkey, 22-25 March 2015 The European Society for Blood and Marrow Transplantation (EBMT) is the leading scientific society for professionals involved in hematopoietic stem-cell transplantation (HSCT) and represents 563 transplant centers from 57 countries within and outside Europe. Each year, the EBMT Annual Meeting brings together over 4,500 scientists, physicians, nurses, biologists, technicians and patients to discuss scientific data that build on past achievements in the field of HSCT. The procedure offers the chance of long-term remission of hematological and lymphoid cancers, but patients are at increased risk of serious infections, especially after allogeneic HSCT. These infections include the invasive fungal infections that were among the important topics discussed during EBMT 2015.
135
Five selfish reasons to work reproducibly
- OPEN
- Genome biology
- Published about 5 years ago
- Discuss
And so, my fellow scientists: ask not what you can do for reproducibility; ask what reproducibility can do for you! Here, I present five reasons why working reproducibly pays off in the long run and is in the self-interest of every ambitious, career-oriented scientist.
132
Two experiments were conducted to determine the relative impact of direct and indirect (ad hominem) attacks on science claims. Four hundred and thirty-nine college students (Experiment 1) and 199 adults (Experiment 2) read a series of science claims and indicated their attitudes towards those claims. Each claim was paired with one of the following: A) a direct attack upon the empirical basis of the science claim B) an ad hominem attack on the scientist who made the claim or C) both. Results indicate that ad hominem attacks may have the same degree of impact as attacks on the empirical basis of the science claims, and that allegations of conflict of interest may be just as influential as allegations of outright fraud.
86
Scientists' Reputations Are Based on Getting It Right, Not Being Right
- OPEN
- PLoS biology
- Published almost 5 years ago
- Discuss
Replication is vital for increasing precision and accuracy of scientific claims. However, when replications “succeed” or “fail,” they could have reputational consequences for the claim’s originators. Surveys of United States adults (N = 4,786), undergraduates (N = 428), and researchers (N = 313) showed that reputational assessments of scientists were based more on how they pursue knowledge and respond to replication evidence, not whether the initial results were true. When comparing one scientist that produced boring but certain results with another that produced exciting but uncertain results, opinion favored the former despite researchers' belief in more rewards for the latter. Considering idealized views of scientific practices offers an opportunity to address incentives to reward both innovation and verification.
73
Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public’s trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.
59
Practices and promises of Facebook for science outreach: Becoming a “Nerd of Trust”
- OPEN
- PLoS biology
- Published over 3 years ago
- Discuss
Arguably, the dissemination of science communication has recently entered a new age in which science must compete for public attention with fake news, alternate facts, and pseudoscience. This clash is particularly evident on social media. Facebook has taken a prime role in disseminating fake news, alternate facts, and pseudoscience, but is often ignored in the context of science outreach, especially among individual scientists. Based on new survey data, scientists appear in large Facebook networks but seldom post information about general science, their own scientific research, or culturally controversial topics in science. The typical individual scientist’s audience is large and personally connected, potentially leading to both a broad and deep engagement in science. Moreover, this media values individual expertise, allowing scientists to serve as a “Nerd of Trust” for their online friend and family networks. Science outreach via social media demands a renewed interest, and Facebook may be an overlooked high-return, low-risk science outreach tool in which scientists can play a valuable role to combat disinformation.