SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Schizosaccharomyces

172

Over the last decade, the genome-scale metabolic models have been playing increasingly important roles in elucidating metabolic characteristics of biological systems for a wide range of applications including, but not limited to, system-wide identification of drug targets and production of high value biochemical compounds. However, these genome-scale metabolic models must be able to first predict known in vivo phenotypes before it is applied towards these applications with high confidence. One benchmark for measuring the in silico capability in predicting in vivo phenotypes is the use of single-gene mutant libraries to measure the accuracy of knockout simulations in predicting mutant growth phenotypes.

Concepts: Scientific method, Metabolism, Yeast, Model organism, Ascomycota, Schizosaccharomyces pombe, Yeasts, Schizosaccharomyces

170

Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast.

Concepts: Yeast, Model organism, Ascomycota, Schizosaccharomyces pombe, Yeasts, Model organisms, Schizosaccharomyces, Paul Nurse

170

Drug-induced haploinsufficiency (DIH) in yeast has been considered a valuable tool for drug target identification. A plant metabolite, plumbagin, has potent anticancer activity via reactive oxygen species (ROS) generation. However, the detailed molecular targets of plumbagin for ROS generation are not understood. Here, using DIH and heterozygous deletion mutants of the fission yeast Schizosaccharomyces pombe, we identified 1, 4-phopshatidylinositol 5-kinase (PI5K) its3 as a new molecular target of plumbagin for ROS generation. Plumbagin showed potent anti-proliferative activity (GI(50); 10 µM) and induced cell elongation and septum formation in wild-type S. pombe. Furthermore, plumbagin dramatically increased the intracellular ROS level, and pretreatment with the ROS scavenger, N-acetyl cysteine (NAC), protected against growth inhibition by plumbagin, suggesting that ROS play a crucial role in the anti-proliferative activity in S. pombe. Interestingly, significant DIH was observed in an its3-deleted heterozygous mutant, in which ROS generation by plumbagin was higher than that in wild-type cells, implying that its3 contributes to ROS generation by plumbagin in this yeast. In MCF7 human breast cancer cells, plumbagin significantly decreased the level of a human ortholog, 1, 4-phopshatidylinositol 5-kinase (PI5K)-1B, of yeast its3, and knockdown of PI5K-1B using siPI5K-1B increased the ROS level and decreased cell viability. Taken together, these results clearly show that PI5K-1B plays a crucial role in ROS generation as a new molecular target of plumbagin. Moreover, drug target screening using DIH in S. pombe deletion mutants is a valuable tool for identifying molecular targets of anticancer agents.

Concepts: Cancer, Breast cancer, Chemotherapy, Yeast, Model organism, Ascomycota, Schizosaccharomyces pombe, Schizosaccharomyces

140

The final step in post-translational processing of Ras and Rho GTPases involves methylation of the prenylated cysteine residue by an isoprenylcysteine-O-carboxyl methyltransferase (ICMT). ICMT activity is essential for cell growth and development in higher eukaryotes, and inhibition of GTPase methylation has become an attractive target in cancer therapy to inactivate prenylated oncoproteins. However, the specificity and dynamics of the GTPase methylation process remain to be fully clarified. Notably, cells lacking Mam4, the ICMT ortholog in the fission yeast Schizosaccharomyces pombe, are viable. We have exploited this feature to analyze the role of methylation on GTPase localization and function. We show that methylation differentially affects GTPase membrane localization, being particularly relevant for plasma membrane tethering and downstream signaling of palmitoylated and farnesylated GTPases Ras1 and Rho2 lacking C-terminal polybasic motifs. Indeed, Ras1 and Rho2 cysteine methylation is required for proper regulation of differentiation elicited by MAPK Spk1 and for stress-dependent activation of the cell integrity pathway (CIP) and its main effector MAPK Pmk1. Further, Mam4 negatively regulates TORC2 signaling by a cross-inhibitory mechanism relying on Rho GTPase methylation. These results highlight the requirement for a tight control of GTPase methylation in vivo to allow adequate GTPase function.

Concepts: Protein, Bacteria, Yeast, Model organism, Posttranslational modification, Ascomycota, Schizosaccharomyces pombe, Schizosaccharomyces

21

Certain guanine-rich sequences have an inherent propensity to form G-quadruplex (G4) structures. G4 structures are e.g. involved in telomere protection and gene regulation. However, they also constitute obstacles during replication if they remain unresolved. To overcome these threats to genome integrity, organisms harbor specialized G4 unwinding helicases. In Schizosaccharomyces pombe, one such candidate helicase is Pfh1, an evolutionarily conserved Pif1 homolog. Here, we addressed whether putative G4 sequences in S. pombe can adopt G4 structures and, if so, whether Pfh1 can resolve them. We tested two G4 sequences, derived from S. pombe ribosomal and telomeric DNA regions, and demonstrated that they form inter- and intramolecular G4 structures, respectively. Also, Pfh1 was enriched in vivo at the ribosomal G4 DNA and telomeric sites. The nuclear isoform of Pfh1 (nPfh1) unwound both types of structure, and although the G4-stabilizing compound Phen-DC3 significantly enhanced their stability, nPfh1 still resolved them efficiently. However, stable G4 structures significantly inhibited adenosine triphosphate hydrolysis by nPfh1. Because ribosomal and telomeric DNA contain putative G4 regions conserved from yeasts to humans, our studies support the important role of G4 structure formation in these regions and provide further evidence for a conserved role for Pif1 helicases in resolving G4 structures.

Concepts: DNA, RNA, Yeast, Model organism, Ascomycota, Schizosaccharomyces pombe, Yeasts, Schizosaccharomyces

9

Replicative aging has been demonstrated in asymmetrically dividing unicellular organisms, seemingly caused by unequal damage partitioning. Although asymmetric segregation and inheritance of potential aging factors also occur in symmetrically dividing species, it nevertheless remains controversial whether this results in aging. Based on large-scale single-cell lineage data obtained by time-lapse microscopy with a microfluidic device, in this report, we demonstrate the absence of replicative aging in old-pole cell lineages of Schizosaccharomyces pombe cultured under constant favorable conditions. By monitoring more than 1,500 cell lineages in 7 different culture conditions, we showed that both cell division and death rates are remarkably constant for at least 50-80 generations. Our measurements revealed that the death rate per cellular generation increases with the division rate, pointing to a physiological trade-off with fast growth under balanced growth conditions. We also observed the formation and inheritance of Hsp104-associated protein aggregates, which are a potential aging factor in old-pole cell lineages, and found that these aggregates exhibited a tendency to preferentially remain at the old poles for several generations. However, the aggregates were eventually segregated from old-pole cells upon cell division and probabilistically allocated to new-pole cells. We found that cell deaths were typically preceded by sudden acceleration of protein aggregation; thus, a relatively large amount of protein aggregates existed at the very ends of the dead cell lineages. Our lineage tracking analyses, however, revealed that the quantity and inheritance of protein aggregates increased neither cellular generation time nor cell death initiation rates. Furthermore, our results demonstrated that unusually large amounts of protein aggregates induced by oxidative stress exposure did not result in aging; old-pole cells resumed normal growth upon stress removal, despite the fact that most of them inherited significant quantities of aggregates. These results collectively indicate that protein aggregates are not a major determinant of triggering cell death in S. pombe and thus cannot be an appropriate molecular marker or index for replicative aging under both favorable and stressful environmental conditions.

Concepts: Cell, Death, Senescence, Yeast, Ascomycota, Schizosaccharomyces pombe, Multicellular organism, Schizosaccharomyces

4

Epigenetic systems are well known for the roles they play in regulating the differential expression of the same genome in different cell types. However, epigenetic systems can also directly impact genomic integrity by protecting genetic sequences. Using an experimental evolutionary approach, we studied rates of mutation in the fission yeast Schizosaccharomyces pombe strains that lacked genes encoding several epigenetic regulators or mismatch repair components. We report that loss of a functional mismatch repair pathway in S. pombe resulted in the preferential enrichment of mutations in euchromatin, indicating that the mismatch repair machinery preferentially protected genetic fidelity in euchromatin. This preference is likely determined by differences in the accessibility of chromatin at distinct chromatin regions, which is supported by our observations that chromatin accessibility positively correlated with mutation rates in S. pombe or human cancer samples with deficiencies in mismatch repair. Importantly, such positive correlation was not observed in S. pombe strains or human cancer samples with functional mismatch repair machinery.

Concepts: DNA, Genetics, Gene expression, Mutation, Yeast, Model organism, Schizosaccharomyces pombe, Schizosaccharomyces

3

Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding.

Concepts: DNA, Protein, Molecular biology, RNA, Yeast, Nucleic acid, Schizosaccharomyces pombe, Schizosaccharomyces

3

This study was designed to identify bioactive compounds that alter the cellular shape of the fission yeast Schizosaccharomyces pombe, by affecting functions involved in the cell cycle or cell morphogenesis. We used a multidrug sensitive fission yeast strain, SAK950 to screen a library of 657 actinomycete bacteria and identified 242 strains that induced eight different major shape phenotypes in S. pombe. These include the typical cell cycle related phenotype, Elongated cells and cell morphology related phenotype Rounded cells. As a proof of principle we purified four of these activities, one of which is a novel compound and three that are the previously known compounds, Leptomycin B, Streptonigrin and Cycloheximide. In this study we have also shown novel effects for two of these compounds, Leptomycin B and Cycloheximide. The identification of these four compounds and the explanation of the S. pombe phenotypes in terms of their known, or predicted bioactivities, confirm the effectiveness of this approach.

Concepts: Gene, Bacteria, Yeast, Model organism, Ascomycota, Schizosaccharomyces pombe, Yeasts, Schizosaccharomyces

3

Eukaryotes remodel the nucleus during mitosis using a variety of mechanisms that differ in the timing and the extent of nuclear envelope (NE) breakdown. Here, we probe the principles enabling this functional diversity by exploiting the natural divergence in NE management strategies between the related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus [1-3]. We show that inactivation of Ned1, the phosphatidic acid phosphatase of the lipin family, by CDK phosphorylation is both necessary and sufficient to promote NE expansion required for “closed” mitosis in S. pombe. In contrast, Ned1 is not regulated during division in S. japonicus, thus limiting membrane availability and necessitating NE breakage. Interspecies gene swaps result in phenotypically normal divisions with the S. japonicus lipin acquiring an S. pombe-like mitotic phosphorylation pattern. Our results provide experimental evidence for the mitotic regulation of phosphatidic acid flux and suggest that the regulatory networks governing lipin activity diverged in evolution to give rise to strikingly dissimilar mitotic programs.

Concepts: Cell nucleus, Eukaryote, Chromosome, Yeast, Cell cycle, Mitosis, Schizosaccharomyces pombe, Schizosaccharomyces