Discover the most talked about and latest scientific content & concepts.

Concept: Rosetta Stone


The first annual Stroke Translational Research Advancement Workshop (STRAW), entitled “Uncovering the Rosetta Stone: Key Elements in Translating Stroke Therapeutics from Pre-Clinical to Clinical” was held at the University of Kentucky on October 4-5, 2017. This workshop was organized by the Center for Advanced Translational Stroke Science. The workshop consisted of 2 days of activities. These included three presentations establishing the areas of research in stroke therapeutics, discussing the routes for translation from bench to bedside, and identifying successes and failures in the field. On day 2, grant funding opportunities and goals for the National Institute for Neurological Diseases and Stroke were presented. In addition, the meeting also included break-out sessions designed to connect researchers in areas of stroke, and to foster potential collaborations. Finally, the meeting concluded with an open discussion among attendees led by a panel of experts.

Concepts: Translation, Translational medicine, British Museum, Rosetta Stone, Rosetta, Egyptian hieroglyphs, Jean-François Champollion


Leading animal models are powerful tools for translational research, but they also present obstacles. Poorly conducted preclinical research in animals is a common cause of translational failure, but even when such research is well-designed and carefully executed, challenges remain. In particular, dominant models may bias research directions, elide essential aspects of human disease, omit important context, or subtly shift research targets. Recognizing these stumbling blocks can help us find ways to avoid them: employing a wider range of models, incorporating more realistic environmental conditions, better aligning studies between animals and patients, and focusing on human biology and therapeutic goals. Such changes are costly; but insisting it would be impractical or unrealistic to change strategies offers no way out of the current impasse. Rather, we must acknowledge the obstacles as well as the advantages presented by core models, and direct some of our investments in translational research toward getting around them.

Concepts: Medicine, Disease, Poverty, Animal, Change, Block, Rosetta Stone, Rosetta


Different accelerometer cutpoints used by different researchers often yields vastly different estimates of moderate-to-vigorous intensity physical activity (MVPA). This is recognized as cutpoint non-equivalence (CNE), which reduces the ability to accurately compare youth MVPA across studies. The objective of this research is to develop a cutpoint conversion system that standardizes minutes of MVPA for six different sets of published cutpoints.

Concepts: British Museum, Rosetta Stone, Rosetta, Egyptian hieroglyphs, Jean-François Champollion


Proteins, the main cell machinery which play a major role in nearly every cellular process, have always been a central focus in biology. We live in the post-genomic era, and inferring information from massive data sets is a steadily growing universal challenge. The increasing availability of fully sequenced genomes can be regarded as the ‘Rosetta Stone’ of the protein universe, allowing the understanding of genomes and their evolution, just as the original Rosetta Stone allowed Champollion to decipher the ancient Egyptian hieroglyphics. In this review, we consider aspects of the protein domain architectures repertoire that are closely related to those of human languages and aim to provide some insights about the language of proteins.

Concepts: DNA, Gene, Molecular biology, Ancient Egypt, Rosetta Stone, Egyptian hieroglyphs, Jean-François Champollion, Demotic


Venom research has been continuously enhanced by technological advances. High-throughput technologies are changing the classical paradigm of hypothesis-driven research to technology-driven approaches. However, the thesis advocated in this paper is that full proteome coverage at locus-specific resolution requires integrating the best of both worlds into a protocol that includes decomplexation of the venom proteome prior to liquid chromatography-tandem mass spectrometry matching against a species-specific transcriptome. This approach offers the possibility of proof-checking the species-specific contig database using proteomics data. Immunoaffinity chromatography constitutes the basis of an antivenomics workflow designed to quantify the extent of cross-reactivity of antivenoms against homologous and heterologous venom toxins. In the author’s view, snake venomics and antivenomics form part of a biology-driven conceptual framework to unveil the genesis and natural history of venoms, and their within- and between-species toxicological and immunological divergences and similarities. Understanding evolutionary trends across venoms represents the Rosetta Stone for generating broad-ranging polyspecific antivenoms.

Concepts: Protein, Mass spectrometry, Proteome, Liquid chromatography-mass spectrometry, Technology, Venom, Rosetta Stone, Rosetta