SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Rosaceae

165

Background and AimsIntraspecific reproductive differentiation into sexual and apomictic cytotypes of differing ploidy is a common phenomenon. However, mechanisms enabling the maintenance of both reproductive modes and integrity of cytotypes in sympatry are as yet poorly understood. This study examined the association of sexual and apomictic seed formation with ploidy as well as gene flow towards sexuals within populations of purely polyploid Potentilla puberula.MethodsThe study is based on 22 populations representing various combinations of five polyploid cytotypes (tetraploid-octoploid) from East Tyrol, Austria. Embryo ploidy and the endosperm/embryo ploidy ratio obtained by a flow cytometric seed screen were used to infer reproductive modes of seed formation and to calculate the male and female genomic contributions to the embryo and endosperm. Self-incompatibility (SI) patterns were assessed and a new indirect approach was used to test for the occurrence of intercytotype matings based on the variation in the male genomic contribution to sexually derived embryos on the level of developed seed.Key ResultsTetraploids formed seeds almost exclusively via sexual reproduction, whereas penta- to octoploids were preferentially apomictic. Non-random distribution of reproductive modes within maternal plants further revealed a tendency to separate the sexual from the apomictic mode among individuals. Self-incompatibility of sexuals indicated functionality of the gametophytic SI system despite tetraploidy of the nuclear genome. We found no indication for significant cross-fertilization of tetraploids by the high polyploids.ConclusionsThe study revealed a rare example of intraspecific differentiation into sexual and apomictic cytotypes at the polyploid level. The integrity of the sexual tetraploids was maintained due to reproductive isolation from the apomictic higher polyploids. Functionality of the gametophytic SI system suggested that the tetraploids are functional diploids.

Concepts: Genetics, Reproduction, Genome, Seed, Asexual reproduction, Rosaceae, Plant reproduction, Parthenogenesis

154

Peach (Prunus persica L.) is a highly valuable crop species and is recognized by molecular researchers as a model fruit for the Rosaceae family. Using whole-genome sequencing data generated from 129 peach accessions, here we perform a comprehensive genome-wide association study for 12 key agronomic traits. We show that among the 10 qualitative traits investigated, nine exhibit consistent and more precise association signals than previously identified by linkage analysis. For two of the qualitative traits, we describe candidate genes, one potentially involved in cell death and another predicted to encode an auxin-efflux carrier, that are highly associated with fruit shape and non-acidity, respectively. Furthermore, we find that several genomic regions harbouring association signals for fruit weight and soluble solid content overlapped with predicted selective sweeps that occurred during peach domestication and improvement. Our findings contribute to the large-scale characterization of genes controlling agronomic traits in peach.

Concepts: Genetics, Prunus, Peach, Rosaceae, Drupe, Cherry, Apricot, Prunoideae

154

Fragaria × ananassa (common name: strawberry) is a globally cultivated hybrid species belonging to Rosaceae family. Colletotrichum acutatum sensu lato (s.l.) is considered to be the second most economically important pathogen worldwide affecting strawberries. A collection of 148 Colletotrichum spp. isolates including 67 C. acutatum s.l. isolates associated with the phytosanitary history of UK strawberry production were used to characterize multi-locus genetic variation of this pathogen in the UK, relative to additional reference isolates that represent a worldwide sampling of the diversity of the fungus. The evidence indicates that three different species C. nymphaeae, C. godetiae and C. fioriniae are associated with strawberry production in the UK, which correspond to previously designated genetic groups A2, A4 and A3, respectively. Among these species, 12 distinct haplotypes were identified suggesting multiple introductions into the country. A subset of isolates was also used to compare aggressiveness in causing disease on strawberry plants and fruits. Isolates belonging to C. nymphaeae, C. godetiae and C. fioriniae representative of the UK anthracnose pathogen populations showed variation in their aggressiveness. Among the three species, C. nymphaeae and C. fioriniae appeared to be more aggressive compared to C. godetiae. This study highlights the genetic and pathogenic heterogeneity of the C. acutatum s.l. populations introduced into the UK linked to strawberry production.

Concepts: Natural selection, Evolution, Population genetics, Rosaceae, Garden strawberry, Fragaria, Colletotrichum, Colletotrichum acutatum

146

The Rosaceae family encompasses numerous genera exhibiting morphological diversification in fruit types and plant habit as well as a wide variety of chromosome numbers. Comparative genomics between various Rosaceous genera has led to the hypothesis that the ancestral genome of the family contained nine chromosomes, however, the synteny studies performed in the Rosaceae to date encompass species with base chromosome numbers x = 7 (Fragaria), x = 8 (Prunus), and x = 17 (Malus), and no study has included species from one of the many Rosaceous genera containing a base chromosome number of x = 9.

Concepts: DNA, Gene, Biology, Organism, Species, Chromosome, Rosaceae, Kingdom

141

Fruits are the defining feature of angiosperms, likely have contributed to angiosperm successes by protecting and dispersing seeds, and provide foods to humans and other animals, with many morphological types and important ecological and agricultural implications. Rosaceae is a family with ~3000 species and an extraordinary spectrum of distinct fruits, including fleshy peach, apple, and strawberry prized by their consumers, as well as dry achenetum and follicetum with features facilitating seed dispersal, excellent for studying fruit evolution. To address Rosaceae fruit evolution and other questions, we generated 125 new transcriptome and genomic datasets and identified hundreds of nuclear genes to reconstruct a well-resolved Rosaceae phylogeny with highly supported monophyly of all subfamilies and tribes. Molecular clock analysis revealed an estimated age of ~101.6 Mya for crown Rosaceae and divergence times of tribes and genera, providing a geological and climate context for fruit evolution. Phylogenomic analysis yielded strong evidence for numerous whole genome duplications (WGDs), supporting the hypothesis that the apple tribe had a WGD and revealing another one shared by fleshy fruit-bearing members of this tribe, with moderate support for WGDs in the peach tribe and other groups. Ancestral character reconstruction for fruit types supports independent origins of fleshy fruits from dry-fruit ancestors, including the evolution of drupes (e.g., peach) and pomes (e.g., apple) from follicetum, and drupetum (raspberry and blackberry) from achenetum. We propose that WGDs and environmental factors, including animals, contributed to the evolution of the many fruits in Rosaceae, which provide a foundation for understanding fruit evolution.

Concepts: Evolution, Genome, Species, Fruit, Seed, Peach, Rosaceae, Apple

103

The domesticated almond [Prunus dulcis (L.) Batsch] and peach [P. persica (Mill.) D. A. Webb] originate on opposite sides of Asia and were independently domesticated approximately 5000 years ago. While interfertile, they possess alternate mating systems and differ in a number of morphological and physiological traits. Here we evaluated patterns of genome-wide diversity in both almond and peach to better understand the impacts of mating system, adaptation, and domestication on the evolution of these taxa. Almond has ~7X the genetic diversity of peach, and high genome-wide FST values support their status as separate species. We estimated a divergence time of approximately 8 Mya, coinciding with an active period of uplift in the northeast Tibetan Plateau and subsequent Asian climate change. We see no evidence of bottleneck during domestication of either species, but identify a number of regions showing signatures of selection during domestication and a significant overlap in candidate regions between peach and almond. While we expected gene expression in fruit to overlap with candidate selected regions, instead we find enrichment for loci highly differentiated between the species, consistent with recent fossil evidence suggesting fruit divergence long preceded domestication. Taken together this study tells us how closely related tree species evolve and are domesticated, the impact of these events on their genomes, and the utility of genomic information for long-lived species. Further exploration of this data will contribute to the genetic knowledge of these species and provide information regarding targets of selection for breeding application and further the understanding of evolution in these species.

Concepts: Gene, Genetics, Evolution, Prunus, Peach, Rosaceae, Drupe, Apricot

101

Peach (Prunus persica, Rosaceae) is an extremely popular tree fruit worldwide, with an annual production near 20 million tons. Peach is widely thought to have origins in China, but its evolutionary history is largely unknown. The oldest evidence for the peach has been Chinese archaeological records dating to 8000-7000 BP. Here, we report eight fossil peach endocarps from late Pliocene strata of Kunming City, Yunnan, southwestern China. The fossils are identical to modern peach endocarps, including size comparable to smaller modern varieties, a single seed, a deep dorsal groove, and presence of deep pits and furrows. These fossils show that China has been a critical region for peach evolution since long before human presence, much less agriculture. Peaches evolved their modern morphology under natural selection, presumably involving large, frugivorous mammals such as primates. Much later, peach size and variety increased through domestication and breeding.

Concepts: Evolution, Yunnan, Kunming, Prunus, Peach, Rosaceae, Paleontology, Apricot

28

In this chapter, we describe a real-time PCR detection system for fast, reliable, specific, and sensitive detection and discrimination of ‘Candidatus Phytoplasma mali’, ‘Ca. P. prunorum’, and ‘Ca. P. pyri’ from the 16SrX (apple proliferation-AP) group. These phytoplasmas are causal agents of fruit tree diseases within the Rosaceae family, namely apple proliferation, European stone fruit yellows, and pear decline. The assays use (hydrolysis) TaqMan(®) minor groove binder probes. The panel of assays comprises the same set of primers and specific probes for species-specific amplification, and an additional set of primers and probe for 18S rRNA as an endogenous quality control of DNA extraction. The assays described can be used in routine phytoplasma surveys and in certification programmes.

Concepts: DNA, Polymerase chain reaction, Fruit, Rosaceae, Coconut, Phytoplasma, Apple, Candidatus

27

BackgroundRecently, many studies utilizing next generation sequencing have investigated plant evolution and domestication in annual crops. Peach, Prunus persica, is a typical perennial fruit crop that has ornamental and edible varieties. Unlike other fruit crops, cultivated peach includes a large number of phenotypes but few polymorphisms. In this study, we explore the genetic basis of domestication in peach and the influence of humans on its evolution.ResultsWe perform large-scale resequencing of 10 wild and 74 cultivated peach varieties, including 9 ornamental, 23 breeding, and 42 landrace lines. We identify 4.6 million SNPs, a large number of which could explain the phenotypic variation in cultivated peach. Population analysis shows a single domestication event, the speciation of P. persica from wild peach. Ornamental and edible peach both belong to P. persica, along with another geographically separated subgroup, P. ferganensis.We identify 147 and 262 genes under edible and ornamental selection, respectively. Some of these genes are associated with important biological features. We perform a population heterozygosity analysis in different plants that indicates that free recombination effects could affect domestication history. By applying artificial selection during the domestication of the peach and facilitating its asexual propagation, humans have caused a sharp decline of the heterozygote ratio of SNPs.ConclusionsOur analyses enhance our knowledge of the domestication history of perennial fruit crops, and the dataset we generated could be useful for future research on comparative population genomics.

Concepts: Gene, Genetics, Natural selection, Agriculture, Evolution, Prunus, Peach, Rosaceae

26

BackgroundInterspecific hybridization has long been recognized as a pivotal process in plant evolution and speciation. It occurs fairly common in the genera of the subtribe Pyrinae. In Eriobotrya, a small tree genus of Pyrinae, E. prinoides var. daduheensis has been recognized as either a variety of E. prinoides, a natural hybrid between E. prinoides and E. japonica, or a variety of E. japonica. However, to date, there has been no convincing evidence on its status.ResultsFour nuclear genes and two chloroplast regions were sequenced in 89 individuals of these three Eriobotrya taxa from two locations where they coexist. A few fixed nucleotide substitutions or gaps were found in each of the investigated nuclear and chloroplast loci between E. japonica and E. prinoides. Of the 35 individuals of E. prinoides var. daduheensis, 33 showed nucleotide additivity of E. japonica and E. prinoides in at least one nuclear gene, and 10 of them harboured nucleotide additivity at all the four nuclear genes. Most haplotypes of E. prinoides var. daduheensis were also shared with those of E. japonica and E. prinoides. In the two chloroplast regions, 28 and 7 individuals were identical with E. japonica and E. prinoides, respectively.ConclusionsOur study provides compelling evidence for a hybrid status for E. prinoides var. daduheensis. Most hybrid individuals are later-generation hybrids. Both E. japonica and E. prinoides can serve as female parent. Differential adaptation might maintain the species boundary of E. prinoides and E. japonica in the face of hybridization and potential introgression.

Concepts: DNA, Gene, Natural selection, Evolution, Species, Rosaceae, Loquat, Eriobotrya