SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Rootstock

170

BACKGROUND: Plant grafting techniques have deepened our understanding of the signals facilitating communication between the root and shoot, as well as between shoot and reproductive organs. Transmissible signalling molecules can include hormones, peptides, proteins and metabolites: some of which travel long distances to communicate stress, nutrient status, disease and developmental events. While hypocotyl micrografting techniques have been successfully established for Arabidopsis to explore root to shoot communications, inflorescence grafting in Arabidopsis has not been exploited to the same extent. Two different strategies (horizontal and wedge-style inflorescence grafting) have been developed to explore long distance signalling between the shoot and reproductive organs. We developed a robust wedge-cleft grafting method, with success rates greater than 87%, by developing better tissue contact between the stems from the inflorescence scion and rootstock. We describe how to perform a successful inflorescence stem graft that allows for reproducible translocation experiments into the physiological, developmental and molecular aspects of long distance signalling events that promote reproduction. RESULTS: Wedge grafts of the Arabidopsis inflorescence stem were supported with silicone tubing and further sealed with parafilm to maintain the vascular flow of nutrients to the shoot and reproductive tissues. Nearly all (87%) grafted plants formed a strong union between the scion and rootstock. The success of grafting was scored using an inflorescence growth assay based upon the growth of primary stem. Repeated pruning produced new cauline tissues, healthy flowers and reproductive siliques, which indicates a healthy flow of nutrients from the rootstock. Removal of the silicone tubing showed a tightly fused wedge graft junction with callus proliferation. Histological staining of sections through the graft junction demonstrated the differentiation of newly formed vascular connections, parenchyma tissue and lignin accumulation, supporting the presumed success of the graft union between two sections of the primary inflorescence stem. CONCLUSIONS: We describe a simple and reliable method for grafting sections of an Arabidopsis inflorescence stem. This step-by-step protocol facilitates laboratories without grafting experience to further explore the molecular and chemical signalling which coordinates communications between the shoot and reproductive tissues.

Concepts: Reproductive system, Grafting, Plant stem, Plant reproduction, Rose, Rootstock, Tree shaping, Tomato grafting

169

Vitis vinifera scions are commonly grafted onto rootstocks of other grape species to influence scion vigour and provide resistance to soil-borne pests and abiotic stress; however, the mechanisms by which rootstocks affect scion physiology remain unknown. This study characterized the hydraulic physiology of Vitis rootstocks that vary in vigour classification by investigating aquaporin (VvPIP) gene expression, fine-root hydraulic conductivity (Lp®), % aquaporin contribution to Lp®, scion transpiration, and the size of root systems. Expression of several VvPIP genes was consistently greater in higher-vigour rootstocks under favourable growing conditions in a variety of media and in root tips compared to mature fine roots. Similar to VvPIP expression patterns, fine-root Lp® and % aquaporin contribution to Lp® determined under both osmotic (Lp®(Osm)) and hydrostatic (Lp®(Hyd)) pressure gradients were consistently greater in high-vigour rootstocks. Interestingly, the % aquaporin contribution was nearly identical for Lp®(Osm) and Lp®(Hyd) even though a hydrostatic gradient would induce a predominant flow across the apoplastic pathway. In common scion greenhouse experiments, leaf area-specific transpiration (E) and total leaf area increased with rootstock vigour and were positively correlated with fine-root Lp®. These results suggest that increased canopy water demands for scion grafted onto high-vigour rootstocks are matched by adjustments in root-system hydraulic conductivity through the combination of fine-root Lp® and increased root surface area.

Concepts: Gene, Grafting, Root, Plant reproduction, Grape, Viticulture, Phylloxera, Rootstock

28

Elements of micropropagation include establishment of shoot tip cultures, proliferation, rooting, and acclimatization of the resulting plantlets. The wide genetic variation in Pyrus makes micropropagation challenging for many genotypes. Initiation of shoots is most successful from forced dormant shoots or from scions grafted onto seedling rootstocks to impose juvenility. Clean shoots are recovered after testing for contaminants at the initiation stage on ½ strength Murashige and Skoog 1962 medium (MS), at pH 6.9 for 1 week or by streaking on nutrient agar. Although pear species and cultivars are cultured on several well-known media, MS is the most commonly used. Our studies showed that multiplication and growth of shoots are best on Pear Medium with higher concentrations of calcium chloride, potassium phosphate, and magnesium sulfate than MS medium and 4.4 μM N(6) benzyladenine. Pear shoots are often recalcitrant to rooting; however, a 5 s dip in 10 mM indole-3-butyric acid or naphthalene acetic acid before planting on basal medium without plant growth regulators is effective for many genotypes. Pear shoots store well at 1-4°C, and can hold for as long as 4 years without reculture. Cryopreservation protocols are available for long-term storage of pear shoot tips. Acclimation of in vitro-rooted or micrografted shoots in a mist bed follows standard procedures.

Concepts: Grafting, Agar, Plant hormone, Salt, Plant reproduction, Shoot, Rootstock, Plant propagation

0

Environmental stresses that perturb plant water relations influence abscisic acid (ABA) concentrations, but it is unclear whether long-distance ABA transport contributes to changes in local ABA levels. To determine the physiological relevance of ABA transport, we made reciprocal- and self-grafts of ABA-deficient flacca mutant and wild-type (WT) tomato plants, in which low phosphorus (P) conditions decreased ABA concentrations while salinity increased ABA concentrations. Whereas foliar ABA concentrations in the WT scions were rootstock independent under normal conditions, salinity resulted in long-distance transport of ABA: flacca scions had approximately twice as much ABA when grafted on WT rootstocks compared to flacca rootstocks. Root ABA concentrations were scion dependent: both WT and flacca rootstocks had less ABA with the flacca mutant scion than with the WT scion under normal conditions. In WT scions, whereas rootstock genotype had limited effects on stomatal conductance under normal conditions, a flacca rootstock resulted in decreased leaf area in stressed plants, presumably due to attenuated root-to-shoot ABA transport. In flacca scions, a WT rootstock decreased stomatal conductance but increased leaf area of stressed plants, likely due to enhanced root-to-shoot ABA transport. Thus, long-distance ABA transport can affect responses in distal tissues by changing local ABA concentrations.

Concepts: Photosynthesis, Grafting, Fern, Seed, Leaf, Abscission, Plant reproduction, Rootstock

0

Selecting rootstocks for high nitrogen acquisition ability may allow decreased N fertilizer application without reducing tomato yields, minimizing environmental nitrate pollution. A commercial hybrid tomato variety was grafted on a genotyped population of 130 recombinant inbred lines (RILs) derived from Solanum pimpinellifolium, and compared with self- and non-grafted controls under contrasting nitrate availabilities (13.8 vs 1.0mM) in the nutrient solution. Grafting itself altered xylem sap composition under N-sufficient conditions, particularly Na(+) (8.75-fold increase) concentration. N deprivation decreased shoot dry weight by 72.7% across the grafted RIL population, and one RIL rootstock allowed higher total leaf N content than the best of controls, suggesting more effective N uptake. Sixty-two significant QTLs were detected by multiple QTL mapping procedure for leaf N concentration (LNC), vegetative growth, and the xylem sap concentrations of Mn and four phytohormone groups (cytokinins, gibberellins, salicylic acid and jasmonic acid). Only three LNC QTLs could be common between nitrogen treatments. Clustering of rootstock QTLs controlling LNC, leaf dry weight and xylem sap salicylic acid concentration in chromosome 9 suggests a genetic relationship between this rootstock phytohormone and N uptake efficiency. Some functional candidate genes found within 2 Mbp intervals of LNC and hormone QTLs are discussed.

Concepts: Genetics, Nitrogen, Quantitative trait locus, Grafting, Tomato, Plant hormone, Plant reproduction, Rootstock

0

Pear psylla is a major obstacle to efficient integrated pest management in pear orchards in Israel and around the world. We used two accessions with natural resistance to pear psylla Cacopsylla bidens (Šulc) - Py.760-261 and Py.701-202 - as interstock grafts to confer psylla resistance to the commercially important ‘Spadona Estiva’ scion (Spadona) cultivar. The interaction of the interstocks with quince and Pyrus betulifolia Bunge rootstocks was also tested.

Concepts: Grafting, Rootstock, Pear, Orchard, Maloideae, Pome, Fruit tree propagation, Quince

0

A previous multi-locus lineage (MLL) analysis of SSR-microsatellite data of old olive trees in the southeast Mediterranean area had shown the predominance of the Souri cultivar (MLL1) among grafted trees. The MLL analysis had also identified an MLL (MLL7) that was more common among rootstocks than other MLLs. We here present a comparison of the MLL combinations MLL1 (scion)/MLL7 (rootstock) and MLL1/MLL1 in order to investigate the possible influence of rootstock on scion phenotype.

Concepts: Evolution, Grafting, Olive, Mediterranean climate, Plant reproduction, Olive oil, Mediterranean Basin, Rootstock

0

Citrus tristeza virus (CTV), induces in the field decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline-tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. Also, sour orange is minimally susceptible to CTV compared to other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a citrus leaf blotch virus-based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defense pathways in the resistance of SO to CTV. Silencing of genes RDR1, NPR1 or DCL2-DCL4, associated with these defense pathways, enhanced virus spread and accumulation in SO plants in comparison with non-silenced controls, whereas silencing genes NPR3-NPR4, associated with the hypersensitive response, produced a slight decrease of CTV accumulation and reduced stunting of SO grafted on CTV-infected rough lemon plants. We have additionally found that the CTV RNA silencing suppressors p20 and p23 suppress also the SA signalling defense, with the suppressor activity being higher in the most virulent isolates. This article is protected by copyright. All rights reserved.

Concepts: Protein, RNA, RNA interference, Citrus, Orange, Plant reproduction, Copyright, Rootstock

0

The grafting of watermelons (Citrullus lanatus) is a common technique that increases yields under stressful soil conditions. The most common rootstocks for watermelons are Cucurbita hybrids. However, they often have a negative impact on fruit quality. Exploiting novel Citrullus germplasm, such as citron melon (Citrullus lanatus var. citroides), is an alternative to avoid these quality problems.

Concepts: Grafting, Fruit, Plant reproduction, Cucurbitaceae, Rootstock, Watermelon, Citrullus, Melon

0

Pear (Pyrus communis) is an economically important fruit crop. Drops in yield and even losses of whole plantations are caused by diseases, most importantly fire blight which is triggered by the bacterial pathogen Erwinia amylovora. In response to the infection, biphenyls and dibenzofurans are formed as phytoalexins, biosynthesis of which is initiated by biphenyl synthase (BIS). Two PcBIS transcripts were cloned from fire blight-infected leaves and the encoded enzymes were characterized regarding substrate specificities and kinetic parameters. Expression of PcBIS1 and PcBIS2 was studied in three pear cultivars after inoculation with E. amylovora. Both PcBIS1 and PcBIS2 were expressed in ‘Harrow Sweet’, while only PcBIS2 transcripts were detected in ‘Alexander Lucas’ and ‘Conference’. Expression of the PcBIS genes was observed in both leaves and the transition zone of the stem; however, biphenyls and dibenzofurans were only detected in stems. The maximum phytoalexin level (~110 μg/g dry weight) was observed in the transition zone of ‘Harrow Sweet’, whereas the concentrations were ten times lower in ‘Conference’ and not even detectable in ‘Alexander Lucas’. In ‘Harrow Sweet’, the accumulation of the maximum phytoalexin level correlated with the halt of migration of the transition zone, whereby the residual part of the shoot survived. In contrast, the transition zones of ‘Alexander Lucas’ and ‘Conference’ advanced down to the rootstock, resulting in necrosis of the entire shoots.

Concepts: Gene expression, Bacteria, Fruit, Plant stem, Rootstock, Pear, European Pear, Quince