SciCombinator

Discover the most talked about and latest scientific content & concepts.

Concept: Robotics

261

Artificial muscles hold promise for safe and powerful actuation for myriad common machines and robots. However, the design, fabrication, and implementation of artificial muscles are often limited by their material costs, operating principle, scalability, and single-degree-of-freedom contractile actuation motions. Here we propose an architecture for fluid-driven origami-inspired artificial muscles. This concept requires only a compressible skeleton, a flexible skin, and a fluid medium. A mechanical model is developed to explain the interaction of the three components. A fabrication method is introduced to rapidly manufacture low-cost artificial muscles using various materials and at multiple scales. The artificial muscles can be programed to achieve multiaxial motions including contraction, bending, and torsion. These motions can be aggregated into systems with multiple degrees of freedom, which are able to produce controllable motions at different rates. Our artificial muscles can be driven by fluids at negative pressures (relative to ambient). This feature makes actuation safer than most other fluidic artificial muscles that operate with positive pressures. Experiments reveal that these muscles can contract over 90% of their initial lengths, generate stresses of ∼600 kPa, and produce peak power densities over 2 kW/kg-all equal to, or in excess of, natural muscle. This architecture for artificial muscles opens the door to rapid design and low-cost fabrication of actuation systems for numerous applications at multiple scales, ranging from miniature medical devices to wearable robotic exoskeletons to large deployable structures for space exploration.

Concepts: Energy, Density, Fluid dynamics, Muscle, Fluid, Robotics, Space exploration, Exoskeleton

138

Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways. Here we present a skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity. The actualized specific expandable sensor units integrated on a structured polyimide network, potentially in three-dimensional (3D) integration scheme, can also fulfill simultaneous multi-stimulus sensing and achieve an adjustable sensing range and large-area expandability. We further construct a personalized intelligent prosthesis and demonstrate its use in real-time spatial pressure mapping and temperature estimation. Looking forward, this SCMN has broader applications in humanoid robotics, new prosthetics, human-machine interfaces, and health-monitoring technologies.

Concepts: Sensory system, Skin, Sense, Somatosensory system, Proprioception, Robotics, Somatic sensory system, Somatosensory

137

In the surveillance of interested regions by unmanned aerial vehicle (UAV), system performance relies greatly on the motion control strategy of the UAV and the operation characteristics of the onboard sensors. This paper investigates the 2D path planning problem for the lightweight UAV synthetic aperture radar (SAR) system in an environment of multiple regions of interest (ROIs), the sizes of which are comparable to the radar swath width. Taking into account the special requirements of the SAR system on the motion of the platform, we model path planning for UAV SAR as a constrained multiobjective optimization problem (MOP). Based on the fact that the UAV route can be designed in the map image, an image-based path planner is proposed in this paper. First, the neighboring ROIs are merged by the morphological operation. Then, the parts of routes for data collection of the ROIs can be located according to the geometric features of the ROIs and the observation geometry of UAV SAR. Lastly, the route segments for ROIs surveillance are connected by a path planning algorithm named the sampling-based sparse A* search (SSAS) algorithm. Simulation experiments in real scenarios demonstrate that the proposed sensor-oriented path planner can improve the reconnaissance performance of lightweight UAV SAR greatly compared with the conventional zigzag path planner.

Concepts: Robotics, Radar, Automated planning and scheduling, Unmanned aerial vehicle, Aperture synthesis, Synthetic aperture radar, Surveillance aircraft

106

Brain-computer interface (BCI) technologies aim to provide a bridge between the human brain and external devices. Prior research using non-invasive BCI to control virtual objects, such as computer cursors and virtual helicopters, and real-world objects, such as wheelchairs and quadcopters, has demonstrated the promise of BCI technologies. However, controlling a robotic arm to complete reach-and-grasp tasks efficiently using non-invasive BCI has yet to be shown. In this study, we found that a group of 13 human subjects could willingly modulate brain activity to control a robotic arm with high accuracy for performing tasks requiring multiple degrees of freedom by combination of two sequential low dimensional controls. Subjects were able to effectively control reaching of the robotic arm through modulation of their brain rhythms within the span of only a few training sessions and maintained the ability to control the robotic arm over multiple months. Our results demonstrate the viability of human operation of prosthetic limbs using non-invasive BCI technology.

Concepts: Brain, Human brain, Electroencephalography, Cerebellum, Medical tests, Robotics, Magnetoencephalography

82

The evolution to bipedalism forced humans to develop suitable strategies for dynamically controlling their balance, ensuring stability, and preventing falling. The natural aging process and traumatic events such as lower-limb loss can alter the human ability to control stability significantly increasing the risk of fall and reducing the overall autonomy. Accordingly, there is an urgent need, from both end-users and society, for novel solutions that can counteract the lack of balance, thus preventing falls among older and fragile citizens. In this study, we show a novel ecological approach relying on a wearable robotic device (the Active Pelvis Orthosis, APO) aimed at facilitating balance recovery after unexpected slippages. Specifically, if the APO detects signs of balance loss, then it supplies counteracting torques at the hips to assist balance recovery. Experimental tests conducted on eight elderly persons and two transfemoral amputees revealed that stability against falls improved due to the “assisting when needed” behavior of the APO. Interestingly, our approach required a very limited personalization for each subject, and this makes it promising for real-life applications. Our findings demonstrate the potential of closed-loop controlled wearable robots to assist elderly and disabled subjects and to improve their quality of life.

Concepts: Gerontology, Force, Ageing, Aging, Human anatomy, Control, Robotics

71

Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

Concepts: Fluid dynamics, Fluid, Robotics, Robot, Autonomous robot, Humanoid robot, Pneumatics, Evolutionary robotics

71

Android robots are entering human social life. However, human-robot interactions may be complicated by a hypothetical Uncanny Valley (UV) in which imperfect human-likeness provokes dislike. Previous investigations using unnaturally blended images reported inconsistent UV effects. We demonstrate an UV in subjects' explicit ratings of likability for a large, objectively chosen sample of 80 real-world robot faces and a complementary controlled set of edited faces. An “investment game” showed that the UV penetrated even more deeply to influence subjects' implicit decisions concerning robots' social trustworthiness, and that these fundamental social decisions depend on subtle cues of facial expression that are also used to judge humans. Preliminary evidence suggests category confusion may occur in the UV but does not mediate the likability effect. These findings suggest that while classic elements of human social psychology govern human-robot social interaction, robust UV effects pose a formidable android-specific problem.

Concepts: Psychology, Human, Sociology, Robotics, Robot, Android, Uncanny valley, Android science

61

A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.

Concepts: Psychology, Skill, Machine learning, Learning, Developmental psychology, Statistical inference, Robotics, Robot

48

Objective. At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional (3D) physical space using noninvasive scalp electroencephalogram (EEG) in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that the operation of a real world device has on subjects' control in comparison to a 2D virtual cursor task. Approach. Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a 3D physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Main results. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m s(-1). Significance. Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in 3D physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG-based BCI systems for accomplish complex control in 3D physical space. The present study may serve as a framework for the investigation of multidimensional noninvasive BCI control in a physical environment using telepresence robotics.

Concepts: Time, Brain, Environment, Natural environment, Neuroscience, Dimension, Robotics, Brain-computer interfacing

42

Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

Concepts: Surgery, Temperature, Minimally invasive, Liquid, Invasive, Invasiveness of surgical procedures, Robotics, Robot