Discover the most talked about and latest scientific content & concepts.

Concept: Road


The M74 motorway extension, Glasgow, opened in June 2011. One justification for construction was an expectation that it would reduce road traffic accidents (RTAs) on local non-motorway roads. This study evaluated the impact of the extension on the number of RTAs, stratifying by accident severity.

Concepts: Tram accident, Road, Traffic, Freeway, Infrastructure, Motorway, Accidents, Civil engineering


Since their appearance at the end of the 19th century, traffic lights have been the primary mode of granting access to road intersections. Today, this centuries-old technology is challenged by advances in intelligent transportation, which are opening the way to new solutions built upon slot-based systems similar to those commonly used in aerial traffic: what we call Slot-based Intersections (SIs). Despite simulation-based evidence of the potential benefits of SIs, a comprehensive, analytical framework to compare their relative performance with traffic lights is still lacking. Here, we develop such a framework. We approach the problem in a novel way, by generalizing classical queuing theory. Having defined safety conditions, we characterize capacity and delay of SIs. In the 2-road crossing configuration, we provide a capacity-optimal SI management system. For arbitrary intersection configurations, near-optimal solutions are developed. Results theoretically show that transitioning from a traffic light system to SI has the potential of doubling capacity and significantly reducing delays. This suggests a reduction of non-linear dynamics induced by intersection bottlenecks, with positive impact on the road network. Such findings can provide transportation engineers and planners with crucial insights as they prepare to manage the transition towards a more intelligent transportation infrastructure in cities.

Concepts: Transport, Road, Street, Traffic, Infrastructure, Traffic light, 19th century, Pedestrian crossing


In this paper, we combine the most complete record of daily mobility, based on large-scale mobile phone data, with detailed Geographic Information System (GIS) data, uncovering previously hidden patterns in urban road usage. We find that the major usage of each road segment can be traced to its own - surprisingly few - driver sources. Based on this finding we propose a network of road usage by defining a bipartite network framework, demonstrating that in contrast to traditional approaches, which define road importance solely by topological measures, the role of a road segment depends on both: its betweeness and its degree in the road usage network. Moreover, our ability to pinpoint the few driver sources contributing to the major traffic flow allows us to create a strategy that achieves a significant reduction of the travel time across the entire road system, compared to a benchmark approach.

Concepts: Geography, Geographic information system, Robert Duvall, Mobile phone, Road, Traffic, Cartography, Geographic information science


SignificanceThe goal of this study was to use the Surface Forces Apparatus to examine the effects of slip-stick friction on cartilage surface morphology under different loading and sliding conditions. Different load and speed regimes were represented using friction maps that separated regimes of smooth and stick-slip sliding. The finding of this work is that damage generally occurs within the stick-slip regimes and is not directly related to the friction coefficient. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes (damage) of the cartilage surfaces.

Concepts: Force, Classical mechanics, Friction, Road, Tribology, Roughness, Normal force, Stick-slip phenomenon


The objective of our study was to measure the impact of transportation-related noise and total environmental noise on sleep disturbance for the residents of Montreal, Canada. A telephone-based survey on noise-related sleep disturbance among 4336 persons aged 18 years and over was conducted. LNight for each study participant was estimated using a land use regression (LUR) model. Distance of the respondent’s residence to the nearest transportation noise source was also used as an indicator of noise exposure. The proportion of the population whose sleep was disturbed by outdoor environmental noise in the past 4 weeks was 12.4%. The proportion of those affected by road traffic, airplane and railway noise was 4.2%, 1.5% and 1.1%, respectively. We observed an increased prevalence in sleep disturbance for those exposed to both rail and road noise when compared for those exposed to road only. We did not observe an increased prevalence in sleep disturbance for those that were both exposed to road and planes when compared to those exposed to road or planes only. We developed regression models to assess the marginal proportion of sleep disturbance as a function of estimated LNight and distance to transportation noise sources. In our models, sleep disturbance increased with proximity to transportation noise sources (railway, airplane and road traffic) and with increasing LNight values. Our study provides a quantitative estimate of the association between total environmental noise levels estimated using an LUR model and sleep disturbance from transportation noise.

Concepts: Scientific method, Regression analysis, Linear regression, Statistics, Transport, Road, Noise pollution, Rail transport


People with low income often experience higher exposures to air pollutants. We compared the exposure to particulate matter (PM1, PM2.5 and PM10), Black Carbon (BC) and ultrafine particles (PNCs; 0.02-1μm) for typical commutes by car, bus and underground from 4 London areas with different levels of income deprivation (G1 to G4, from most to least deprived). The highest BC and PM concentrations were found in G1 while the highest PNC in G3. Lowest concentrations for all pollutants were observed in G2. We found no systematic relationship between income deprivation and pollutant concentrations, suggesting that differences between transport modes are a stronger influence. The underground showed the highest PM concentrations, followed by buses and a much lower concentrations in cars. BC concentrations in the underground were overestimated due to Fe interference. BC concentrations were also higher in buses than cars because of a lower infiltration of outside pollutants into the car cabin. PNCs were highest in buses, closely followed by cars, but lowest in underground due to the absence of combustion sources. Concentration in the road modes (car and bus) were governed by the traffic conditions (such as traffic flow interruptions) at the specific road section. Exposures were reduced in trains with non-openable windows compared to those with openable windows. People from less income-deprived areas have a predominant use of car, receiving the lowest doses (RDD<1μgh(-1)) during commute but generating the largest emissions per commuter. Conversely, commuters from high income-deprived areas have a major reliance on the bus, receiving higher exposures (RDD between 1.52 and 3.49μgh(-1)) while generating less emission per person. These findings suggest an aspect of environmental injustice and a need to incorporate the socioeconomic dimension in life-course exposure assessments.

Concepts: Pollution, Particulate, Road, Air pollution, Diesel particulate matter, Bus, Bicycle, Commuting


Road traffic noise has been associated with hypertension but evidence for the long-term effects on hospital admissions and mortality is limited. We examined the effects of long-term exposure to road traffic noise on hospital admissions and mortality in the general population.

Concepts: Mortality rate, Road, Traffic


Rapid urbanization and increasing demand for transportation burdens urban road infrastructures. The interplay of number of vehicles and available road capacity on their routes determines the level of congestion. Although approaches to modify demand and capacity exist, the possible limits of congestion alleviation by only modifying route choices have not been systematically studied. Here we couple the road networks of five diverse cities with the travel demand profiles in the morning peak hour obtained from billions of mobile phone traces to comprehensively analyse urban traffic. We present that a dimensionless ratio of the road supply to the travel demand explains the percentage of time lost in congestion. Finally, we examine congestion relief under a centralized routing scheme with varying levels of awareness of social good and quantify the benefits to show that moderate levels are enough to achieve significant collective travel time savings.

Concepts: City, Urban area, São Paulo, Mobile phone, Urbanization, Road, Viggo Mortensen, Route


Many global challenges, including obesity, health care costs, and climate change, could be addressed in part by increasing the use of bicycles for transportation. Concern about the safety of bicycling on roadways is frequently cited as a deterrent to increasing bicycle use in the USA. The use of effective signage along roadways might help alleviate these concerns by increasing knowledge about the rights and duties of bicyclists and motorists, ideally reducing crashes. We administered a web-based survey, using Twitter for recruitment, to examine how well three US traffic control devices communicated the message that bicyclists are permitted in the center of the travel lane and do not have to “get out of the way” to allow motorists to pass without changing lanes: “Bicycles May Use Full Lane” and “Share the Road” signage, and Shared Lane Markings on the pavement. Each was compared to an unsigned roadway. We also asked respondents whether it was safe for a bicyclist to occupy the center of the travel lane. “Bicycles May Use Full Lane” signage was the most consistently comprehended device for communicating the message that bicyclists may occupy the travel lane and also increased perceptions of safety. “Share the Road” signage did not increase comprehension or perceptions of safety. Shared Lane Markings fell somewhere between. “Bicycles May Use Full Lane” signage showed notable increases in comprehension among novice bicyclists and private motor vehicle commuters, critical target audiences for efforts to promote bicycling in the USA. Although limited in scope, our survey results are indicative and suggest that Departments of Transportation consider replacing “Share the Road” with “Bicycles May Use Full Lane” signage, possibly combined with Shared Lane Markings, if the intent is to increase awareness of roadway rights and responsibilities. Further evaluation through virtual reality simulations and on-road experiments is merited.

Concepts: Cycling, Communication, Road, Traffic, Automobile, Lane, Bicycle, Central reservation


BACKGROUND: This study examined the impact of transportation infrastructure at intersection and non-intersection locations on bicycling injury risk. METHODS: In Vancouver and Toronto, we studied adult cyclists who were injured and treated at a hospital emergency department. A case-crossover design compared the infrastructure of injury and control sites within each injured bicyclist’s route. Intersection injury sites (N=210) were compared to randomly selected intersection control sites (N=272). Non-intersection injury sites (N=478) were compared to randomly selected non-intersection control sites (N=801). RESULTS: At intersections, the types of routes meeting and the intersection design influenced safety. Intersections of two local streets (no demarcated traffic lanes) had approximately one-fifth the risk (adjusted OR 0.19, 95% CI 0.05 to 0.66) of intersections of two major streets (more than two traffic lanes). Motor vehicle speeds less than 30 km/h also reduced risk (adjusted OR 0.52, 95% CI 0.29 to 0.92). Traffic circles (small roundabouts) on local streets increased the risk of these otherwise safe intersections (adjusted OR 7.98, 95% CI 1.79 to 35.6). At non-intersection locations, very low risks were found for cycle tracks (bike lanes physically separated from motor vehicle traffic; adjusted OR 0.05, 95% CI 0.01 to 0.59) and local streets with diverters that reduce motor vehicle traffic (adjusted OR 0.04, 95% CI 0.003 to 0.60). Downhill grades increased risks at both intersections and non-intersections. CONCLUSIONS: These results provide guidance for transportation planners and engineers: at local street intersections, traditional stops are safer than traffic circles, and at non-intersections, cycle tracks alongside major streets and traffic diversion from local streets are safer than no bicycle infrastructure.

Concepts: Risk, Cycling, Road, Vehicle, Automobile, Lane, Bicycle, Utility cycling