Discover the most talked about and latest scientific content & concepts.

Concept: RNA interference


Although RNA interference (RNAi) is known to play an important part in defense against viruses of invertebrates, its contribution to mammalian anti-viral defense has been a matter of dispute. This is surprising because all components of the RNAi machinery necessary for robust RNAi-mediated restriction of viruses are conserved in mammals, and the introduction of synthetic small interfering RNAs (siRNAs) into cells efficiently silences the replication of viruses that contain siRNA complementary sequences in those cells. Here, I discuss the reasons for the dispute, and review the evidence that RNAi is a part of the physiological defense of mammalian cells against viral infections.

Concepts: DNA, Gene expression, Bacteria, Virus, RNA, Small interfering RNA, RNA interference, RNA polymerase


BACKGROUND: RNA interference (RNAi) becomes an increasingly important and effective genetic tool to study the function of target genes by suppressing specific genes of interest. This system approach helps identify signaling pathways and cellular phase types by tracking intensity and/or morphological changes of cells. The traditional RNAi screening scheme, in which one siRNA is designed to knockdown one specific mRNA target, needs a large library of siRNAs and turns out to be time-consuming and expensive. RESULTS: In this paper, we propose a conceptual model, called compressed sensing RNAi (csRNAi), which employs the unique combination of group of small interfering RNAs (siRNAs) to knockdown a much larger size of genes. This strategy is based on the fact that one gene can be partially bound with several small interfering RNAs (siRNAs) and conversely, one siRNA can bind to a few genes with distinct binding affinity. This model constructs a multi-to-multi correspondence between siRNAs and their targets, with siRNAs much fewer than mRNA targets, compared with the conventional scheme. Mathematically this problem involves an underdetermined system of equations (linear or nonlinear), which is ill-posed in general. However, the recently developed compressed sensing (CS) theory can solve this problem. We present a mathematical model to describe the csRNAi system based on both CS theory and biological concerns. To build this model, we first search nucleotide motifs in a target gene set. Then we propose a machine learning based method to find the effective siRNAs with novel features, such as image features and speech features to describe an siRNA sequence. Numerical simulations show that we can reduce the siRNA library to one third of that in the conventional scheme. In addition, the features to describe siRNAs outperform the existing ones substantially. CONCLUSIONS: This csRNAi system is very promising in saving both time and cost for large-scale RNAi screening experiments which may benefit the biological research with respect to cellular processes and pathways.

Concepts: DNA, Gene, Genetics, Gene expression, Mathematics, RNA, Small interfering RNA, RNA interference


BACKGROUND: Introduction of a transgene that transcribes RNA homologous to an endogenous gene in the plant genome can induce silencing of both genes, a phenomenon termed cosuppression. Cosuppression was first discovered in transgenic petunia plants transformed with the CHS-A gene encoding chalcone synthase, in which nonpigmented sectors in flowers or completely white flowers are produced. Some of the flower-color patterns observed in transgenic petunias having CHS-A cosuppression resemble those in existing nontransgenic varieties. Although the mechanism by which white sectors are generated in nontransgenic petunia is known to be due to RNA silencing of the CHS-A gene as in cosuppression, whether the same trigger(s) and/or pattern of RNA degradation are involved in these phenomena has not been known. Here, we addressed this question using deep-sequencing and bioinformatic analyses of small RNAs. RESULTS: We analyzed short interfering RNAs (siRNAs) produced in nonpigmented sectors of petal tissues in transgenic petunia plants that have CHS-A cosuppression and a nontransgenic petunia variety Red Star, that has naturally occurring CHS-A RNA silencing. In both silencing systems, 21-nt and 22-nt siRNAs were the most and the second-most abundant size classes, respectively. CHS-A siRNA production was confined to exon 2, indicating that RNA degradation through the RNA silencing pathway occurred in this exon. Common siRNAs were detected in cosuppression and naturally occurring RNA silencing, and their ranks based on the number of siRNAs in these plants were correlated with each other. Noticeably, highly abundant siRNAs were common in these systems. Phased siRNAs were detected in multiple phases at multiple sites, and some of the ends of the regions that produced phased siRNAs were conserved. CONCLUSIONS: The features of siRNA production found to be common to cosuppression and naturally occurring silencing of the CHS-A gene indicate mechanistic similarities between these silencing systems especially in the biosynthetic processes of siRNAs including cleavage of CHS-A transcripts and subsequent production of secondary siRNAs in exon 2. The data also suggest that these events occurred at multiple sites, which can be a feature of these silencing phenomena.

Concepts: DNA, Gene, Genetics, Molecular biology, RNA, Messenger RNA, Small interfering RNA, RNA interference


The influenza endonuclease is an essential subdomain of the viral RNA polymerase. It processes host pre-mRNAs to serve as primers for viral mRNA and is an attractive target for antiinfluenza drug discovery. Compound L-742,001 is a prototypical endonuclease inhibitor, and we found that repeated passaging of influenza virus in the presence of this drug did not lead to the development of resistant mutant strains. Reduced sensitivity to L-742,001 could only be induced by creating point mutations via a random mutagenesis strategy. These mutations mapped to the endonuclease active site where they can directly impact inhibitor binding. Engineered viruses containing the mutations showed resistance to L-742,001 both in vitro and in vivo, with only a modest reduction in fitness. Introduction of the mutations into a second virus also increased its resistance to the inhibitor. Using the isolated wild-type and mutant endonuclease domains, we used kinetics, inhibitor binding and crystallography to characterize how the two most significant mutations elicit resistance to L-742,001. These studies lay the foundation for the development of a new class of influenza therapeutics with reduced potential for the development of clinical endonuclease inhibitor-resistant influenza strains.

Concepts: DNA, Gene, Mutation, Virus, RNA, RNA interference, Influenza, RNA polymerase


Major depression brings about a heavy socio-economic burden worldwide due to its high prevalence and the low efficacy of antidepressant drugs, mostly inhibiting the serotonin transporter (SERT). As a result, ~80% of patients show recurrent or chronic depression, resulting in a poor quality of life and increased suicide risk. RNA interference (RNAi) strategies have been preliminarily used to evoke antidepressant-like responses in experimental animals. However, the main limitation for the medical use of RNAi is the extreme difficulty to deliver oligonucleotides to selected neurons/systems in the mammalian brain. Here we show that the intranasal administration of a sertraline-conjugated small interfering RNA (C-SERT-siRNA) silenced SERT expression/function and evoked fast antidepressant-like responses in mice. After crossing the permeable olfactory epithelium, the sertraline-conjugated-siRNA was internalized and transported to serotonin cell bodies by deep Rab-7-associated endomembrane vesicles. Seven-day C-SERT-siRNA evoked similar or more marked responses than 28-day fluoxetine treatment. Hence, C-SERT-siRNA (i) downregulated 5-HT1A-autoreceptors and facilitated forebrain serotonin neurotransmission, (ii) accelerated the proliferation of neuronal precursors and (iii) increased hippocampal complexity and plasticity. Further, short-term C-SERT-siRNA reversed depressive-like behaviors in corticosterone-treated mice. The present results show the feasibility of evoking antidepressant-like responses by selectively targeting neuronal populations with appropriate siRNA strategies, opening a way for further translational studies.Molecular Psychiatry advance online publication, 23 June 2015; doi:10.1038/mp.2015.80.

Concepts: Brain, RNA, RNA interference, Serotonin, Selective serotonin reuptake inhibitor, Major depressive disorder, Sertraline, Fluoxetine


RNA interference (RNAi) methods for insects are often limited by problems with double-stranded (ds) RNA delivery, which restricts reverse genetics studies and the development of RNAi-based biocides. We therefore delegated to insect symbiotic bacteria the task of: (i) constitutive dsRNA synthesis and (ii) trauma-free delivery. RNaseIII-deficient, dsRNA-expressing bacterial strains were created from the symbionts of two very diverse pest species: a long-lived blood-sucking bug, Rhodnius prolixus, and a short-lived globally invasive polyphagous agricultural pest, western flower thrips (Frankliniella occidentalis). When ingested, the manipulated bacteria colonized the insects, successfully competed with the wild-type microflora, and sustainably mediated systemic knockdown phenotypes that were horizontally transmissible. This represents a significant advance in the ability to deliver RNAi, potentially to a large range of non-model insects.

Concepts: Gene, Bacteria, Evolution, Virus, Genome, RNA, RNA interference, Symbiosis


With advances in screening, the incidence of detection of premalignant breast lesions has increased in recent decades; however, treatment options remain limited to surveillance or surgical removal by lumpectomy or mastectomy. We hypothesized that disease progression could be blocked by RNA interference (RNAi) therapy and set out to develop a targeted therapeutic delivery strategy. Using computational gene network modeling, we identified HoxA1 as a putative driver of early mammary cancer progression in transgenic C3(1)-SV40TAg mice. Silencing this gene in cultured mouse or human mammary tumor spheroids resulted in increased acinar lumen formation, reduced tumor cell proliferation, and restoration of normal epithelial polarization. When the HoxA1 gene was silenced in vivo via intraductal delivery of nanoparticle-formulated small interfering RNA (siRNA) through the nipple of transgenic mice with early-stage disease, mammary epithelial cell proliferation rates were suppressed, loss of estrogen and progesterone receptor expression was prevented, and tumor incidence was reduced by 75%. This approach that leverages new advances in systems biology and nanotechnology offers a novel noninvasive strategy to block breast cancer progression through targeted silencing of critical genes directly within the mammary epithelium.

Concepts: Gene, Gene expression, Cancer, Breast cancer, RNA, RNA interference, Breast, Mammary gland


RNA interference is a fundamental gene regulatory mechanism that is mediated by the RNA-induced silencing complex (RISC). Here we report that an artificial nanoparticle complex can effectively mimic the function of the cellular RISC machinery for inducing target RNA cleavage. Our results show that a specifically designed nanozyme for the treatment of hepatitis C virus (HCV) can actively cleave HCV RNA in a sequence specific manner. This nanozyme is less susceptible to degradation by proteinase activity, can be effectively taken up by cultured human hepatoma cells, is nontoxic to the cultured cells and a xenotransplantation mouse model under the conditions studied, and does not trigger detectable cellular interferon response, but shows potent antiviral activity against HCV in cultured cells and in the mouse model. We have observed a more than 99% decrease in HCV RNA levels in mice treated with the nanozyme. These results show that this nanozyme approach has the potential to become a useful tool for functional genomics, as well as for combating protein-expression-related diseases such as viral infections and cancers.

Concepts: Gene, Bacteria, Virus, RNA, RNA interference, Interferon, Hepatitis C, Hepatitis C virus


Background Current hemophilia treatment involves frequent intravenous infusions of clotting factors, which is associated with variable hemostatic protection, a high treatment burden, and a risk of the development of inhibitory alloantibodies. Fitusiran, an investigational RNA interference (RNAi) therapy that targets antithrombin (encoded by SERPINC1), is in development to address these and other limitations. Methods In this phase 1 dose-escalation study, we enrolled 4 healthy volunteers and 25 participants with moderate or severe hemophilia A or B who did not have inhibitory alloantibodies. Healthy volunteers received a single subcutaneous injection of fitusiran (at a dose of 0.03 mg per kilogram of body weight) or placebo. The participants with hemophilia received three injections of fitusiran administered either once weekly (at a dose of 0.015, 0.045, or 0.075 mg per kilogram) or once monthly (at a dose of 0.225, 0.45, 0.9, or 1.8 mg per kilogram or a fixed dose of 80 mg). The study objectives were to assess the pharmacokinetic and pharmacodynamic characteristics and safety of fitusiran. Results No thromboembolic events were observed during the study. The most common adverse events were mild injection-site reactions. Plasma levels of fitusiran increased in a dose-dependent manner and showed no accumulation with repeated administration. The monthly regimen induced a dose-dependent mean maximum antithrombin reduction of 70 to 89% from baseline. A reduction in the antithrombin level of more than 75% from baseline resulted in median peak thrombin values at the lower end of the range observed in healthy participants. Conclusions Once-monthly subcutaneous administration of fitusiran resulted in dose-dependent lowering of the antithrombin level and increased thrombin generation in participants with hemophilia A or B who did not have inhibitory alloantibodies. (Funded by Alnylam Pharmaceuticals; number, NCT02035605 .).

Concepts: Pharmacology, RNA, Coagulation, RNA interference, Heparin, Haemophilia A, Thrombin, Antithrombin


Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)-the 22-30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads-are generated independently of Dicer from single-stranded precursors. piRNA 5' ends are defined either by Zucchini, the Drosophila homologue of mitoPLD-a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3' ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3' ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3' ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3'-to-5' exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5' and 3' ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3'-end formation.

Concepts: DNA, Gene, Genetics, Transcription, RNA, Messenger RNA, Small interfering RNA, RNA interference